Newer
Older
# move overflow to last bin
# (since thats what np.histogram gives us)
sumw2[-2] += sumw2[-1]
sumw2 = sumw2[:-1]
sumw[-2] += sumw[-1]
sumw = sumw[:-1]
# calculate relative error
errors = np.sqrt(sumw2)/sumw
else:
errors = np.sqrt(hist)/hist
if scale_factor is not None:
hist *= scale_factor
return centers, hist, errors
branch = self.fields[var_index]
if ax is None:
fig, ax = plt.subplots()
else:
fig = None
bkg = self.x_train[:,var_index][self.y_train == 0]
sig = self.x_train[:,var_index][self.y_train == 1]
bkg_weights = self.w_train_tot[self.y_train == 0]
sig_weights = self.w_train_tot[self.y_train == 1]
if hasattr(self, "mask_value"):
bkg_not_masked = np.where(bkg != self.mask_value)[0]
sig_not_masked = np.where(sig != self.mask_value)[0]
bkg = bkg[bkg_not_masked]
sig = sig[sig_not_masked]
bkg_weights = bkg_weights[bkg_not_masked]
sig_weights = sig_weights[sig_not_masked]
if self.balance_dataset:
if len(sig) < len(bkg):
logger.warning("Plotting only up to {} bkg events, since we use balance_dataset".format(len(sig)))
bkg = bkg[0:len(sig)]
bkg_weights = bkg_weights[0:len(sig)]
else:
logger.warning("Plotting only up to {} sig events, since we use balance_dataset".format(len(bkg)))
sig = sig[0:len(bkg)]
sig_weights = sig_weights[0:len(bkg)]
logger.debug("Plotting bkg (min={}, max={}) from {}".format(np.min(bkg), np.max(bkg), bkg))
logger.debug("Plotting sig (min={}, max={}) from {}".format(np.min(sig), np.max(sig), sig))
# calculate percentiles to get a heuristic for the range to be plotted
plot_range = weighted_quantile(
np.concatenate([bkg, sig]),
[0.01, 0.99],
sample_weight=np.concatenate([bkg_weights, sig_weights]),
logger.debug("Calculated range based on percentiles: {}".format(plot_range))
try:
centers_sig, hist_sig, _ = self.get_bin_centered_hist(sig, bins=50, range=plot_range, weights=sig_weights)
centers_bkg, hist_bkg, _ = self.get_bin_centered_hist(bkg, bins=50, range=plot_range, weights=bkg_weights)
except ValueError:
# weird, probably not always working workaround for a numpy bug
plot_range = (float("{:.3f}".format(plot_range[0])), float("{:.3f}".format(plot_range[1])))
logger.warn("Got a value error during plotting, maybe this is due to a numpy bug - changing range to {}".format(plot_range))
centers_sig, hist_sig, _ = self.get_bin_centered_hist(sig, bins=50, range=plot_range, weights=sig_weights)
centers_bkg, hist_bkg, _ = self.get_bin_centered_hist(bkg, bins=50, range=plot_range, weights=bkg_weights)
Nikolai.Hartmann
committed
width = centers_sig[1]-centers_sig[0]
ax.bar(centers_bkg, hist_bkg, color="b", alpha=0.5, width=width)
ax.bar(centers_sig, hist_sig, color="r", alpha=0.5, width=width)
label = branch
if self.data_transformed:
label += " (transformed)"
ax.set_xlabel(label)
if fig is not None:
plot_dir = os.path.join(self.project_dir, "plots")
if not os.path.exists(plot_dir):
os.mkdir(plot_dir)
return save_show(plt, fig, os.path.join(plot_dir, "var_{}.pdf".format(var_index)))
def plot_all_inputs(self):
nrows = math.ceil(math.sqrt(len(self.fields)))
fig, axes = plt.subplots(nrows=int(nrows), ncols=int(nrows),
figsize=(3*nrows, 3*nrows),
gridspec_kw=dict(wspace=0.4, hspace=0.4))
for i in range(len(self.fields)):
self.plot_input(i, ax=axes.reshape(-1)[i])
return save_show(plt, fig, os.path.join(self.project_dir, "all_inputs.pdf"))
def plot_weights(self, bins=100, range=None):
bkg = self.w_train_tot[self.y_train == 0]
sig = self.w_train_tot[self.y_train == 1]
ax.hist(bkg, bins=bins, range=range, color="b", alpha=0.5)
ax.set_yscale("log")
return save_show(plt, fig, os.path.join(self.project_dir, "eventweights_bkg.pdf"))
ax.hist(sig, bins=bins, range=range, color="r", alpha=0.5)
ax.set_yscale("log")
return save_show(plt, fig, os.path.join(self.project_dir, "eventweights_sig.pdf"))
def plot_ROC(self, xlim=(0,1), ylim=(0,1)):
logger.info("Plot ROC curve")
fig, ax = plt.subplots()
ax.grid(color='gray', linestyle='--', linewidth=1)
for y, scores, weight, label in [
(self.y_train, self.scores_train, self.w_train, "train"),
(self.y_test, self.scores_test, self.w_test, "test")
]:
fpr, tpr, threshold = roc_curve(y, scores, sample_weight = weight)
fpr = 1.0 - fpr # background rejection
try:
roc_auc = auc(tpr, fpr)
except ValueError:
logger.warning("Got a value error from auc - trying to rerun with reorder=True")
roc_auc = auc(tpr, fpr, reorder=True)
ax.plot(tpr, fpr, label=str(self.name + " {} (AUC = {:.3f})".format(label, roc_auc)))
ax.plot([0,1],[1,0], linestyle='--', color='black', label='Luck')
ax.set_ylabel("Background rejection")
ax.set_xlabel("Signal efficiency")
ax.set_title('Receiver operating characteristic')
ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
# plt.xticks(np.arange(0,1,0.1))
# plt.yticks(np.arange(0,1,0.1))
ax.legend(loc='lower left', framealpha=1.0)
return save_show(plt, fig, os.path.join(self.project_dir, "ROC.pdf"))
def plot_score(self, log=True, plot_opts=dict(bins=50, range=(0,1)),
ylim=None, xlim=None, density=True,
lumifactor=None, apply_class_weight=True,
invert_activation=False):
if invert_activation:
if not self.activation_function_output == "sigmoid":
raise NotImplementedError("Inverse function of {} not supported yet - "
"currently only sigmoid"
.format(self.activation_function_output))
trf = lambda y : np.log(y/(1-y))
else:
trf = lambda y : y
fig, ax = plt.subplots()
for scores, weights, y, class_label, fn, opts in [
(self.scores_train, self.w_train, self.y_train, 1, ax.bar, dict(color="r", label="signal train")),
(self.scores_train, self.w_train, self.y_train, 0, ax.bar, dict(color="b", label="background train")),
(self.scores_test, self.w_test, self.y_test, 1, ax.errorbar, dict(fmt="ro", label="signal test")),
(self.scores_test, self.w_test, self.y_test, 0, ax.errorbar, dict(fmt="bo", label="background test")),
]:
weights = weights[y==class_label]
if apply_class_weight is True and (lumifactor is not None):
logger.warning("not applying class weight, since lumifactor given")
if apply_class_weight and (lumifactor is None):
weights = weights*self.class_weight[class_label]
if lumifactor is not None:
weights = weights*lumifactor
centers, hist, rel_errors = self.get_bin_centered_hist(
trf(scores[y==class_label].reshape(-1)),
weights=weights,
**plot_opts
)
width = centers[1]-centers[0]
if density:
hist = hist/width
if fn == ax.errorbar:
errors = rel_errors*hist
opts.update(yerr=errors)
else:
opts.update(width=width, alpha=0.5)
fn(centers, hist, **opts)
if ylim is not None:
ax.set_ylim(*ylim)
if xlim is not None:
ax.set_xlim(*xlim)
ax.set_xlabel("NN output")
if density:
ax.set_ylabel("dN / d(NN output)")
else:
ax.set_ylabel("Events / {:.2f}".format(width))
if apply_class_weight:
ax.set_title("Class weights applied")
ax.legend(loc='upper center', framealpha=0.5)
return save_show(plt, fig, os.path.join(self.project_dir, "scores.pdf"))
def plot_significance_hist(self, lumifactor=1., significance_function=None, plot_opts=dict(bins=50, range=(0, 1))):
"""
Plot significances based on a histogram of scores
"""
logger.info("Plot significances")
centers_sig_train, hist_sig_train, rel_errors_sig_train = self.get_bin_centered_hist(self.scores_train[self.y_train==1].reshape(-1), weights=self.w_train[self.y_train==1], **plot_opts)
centers_bkg_train, hist_bkg_train, rel_errors_bkg_train = self.get_bin_centered_hist(self.scores_train[self.y_train==0].reshape(-1), weights=self.w_train[self.y_train==0], **plot_opts)
centers_sig_test, hist_sig_test, rel_errors_sig_test = self.get_bin_centered_hist(self.scores_test[self.y_test==1].reshape(-1), weights=self.w_test[self.y_test==1], **plot_opts)
centers_bkg_test, hist_bkg_test, rel_errors_bkg_test = self.get_bin_centered_hist(self.scores_test[self.y_test==0].reshape(-1), weights=self.w_test[self.y_test==0], **plot_opts)
significances_train = []
significances_test = []
for hist_sig, hist_bkg, rel_errors_sig, rel_errors_bkg, significances, w, y in [
(hist_sig_train, hist_bkg_train, rel_errors_sig_train, rel_errors_bkg_train, significances_train, self.w_train, self.y_train),
(hist_sig_test, hist_bkg_test, rel_errors_sig_test, rel_errors_bkg_test, significances_test, self.w_test, self.y_test),
# factor to rescale due to using only a fraction of events (training and test samples)
# normfactor_sig = (np.sum(self.w_train[self.y_train==1])+np.sum(self.w_test[self.y_test==1]))/np.sum(w[y==1])
# normfactor_bkg = (np.sum(self.w_train[self.y_train==0])+np.sum(self.w_test[self.y_test==0]))/np.sum(w[y==0])
normfactor_sig = self.step_signal
normfactor_bkg = self.step_bkg
# first set nan values to 0 and multiply by lumi
for arr in hist_sig, hist_bkg, rel_errors_bkg:
arr[np.isnan(arr)] = 0
hist_sig *= lumifactor*normfactor_sig
hist_bkg *= lumifactor*normfactor_bkg
for i in range(len(hist_sig)):
s = sum(hist_sig[i:])
b = sum(hist_bkg[i:])
db = math.sqrt(sum((rel_errors_bkg[i:]*hist_bkg[i:])**2))
if significance_function is None:
z = poisson_asimov_significance(s, 0, b, db)
except (ZeroDivisionError, ValueError) as e:
z = 0
else:
z = significance_function(s, b, db)
if z == float('inf'):
z = 0
logger.debug("s, b, db, z = {}, {}, {}, {}".format(s, b, db, z))
significances.append(z)
fig, ax = plt.subplots()
width = centers_sig_train[1]-centers_sig_train[0]
ax.plot(centers_bkg_train, significances_train, label="train, Z_max={}".format(np.amax(significances_train)))
ax.plot(centers_bkg_test, significances_test, label="test, Z_max={}".format(np.amax(significances_test)))
ax.set_xlabel("Cut on NN score")
ax.set_ylabel("Significance")
ax.legend(loc='lower center', framealpha=0.5)
return save_show(plt, fig, os.path.join(self.project_dir, "significances_hist.pdf"))
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
@staticmethod
def calc_s_ds_b_db(scores, y, w):
"""
Calculate the sum of weights of signal (s), background (b) and the
sqrt of the squared sum of weights for all possible threshold
of the output score.
Following the implementation from sklearn.metrics.ranking._binary_clf_curve
"""
desc_score_indices = np.argsort(scores, kind="mergesort")[::-1]
scores_sorted = scores[desc_score_indices]
y_sorted = y[desc_score_indices]
w_sorted = w[desc_score_indices]
distinct_value_indices = np.where(np.diff(scores_sorted))[0]
threshold_idxs = np.r_[distinct_value_indices, y_sorted - 1]
s_sumw = stable_cumsum(y_sorted * w_sorted)[threshold_idxs]
s_sumw2 = stable_cumsum(y_sorted * (w_sorted**2))[threshold_idxs]
b_sumw = stable_cumsum(np.logical_not(y_sorted) * w_sorted)[threshold_idxs]
b_sumw2 = stable_cumsum(np.logical_not(y_sorted) * (w_sorted**2))[threshold_idxs]
return s_sumw, np.sqrt(s_sumw2), b_sumw, np.sqrt(b_sumw2), scores_sorted[threshold_idxs]
def plot_significance(self, significance_function=None, maxsteps=1000, lumifactor=1., vectorized=False):
"""
Plot the significance when cutting on all posible thresholds and plot against signal efficiency.
"""
if significance_function is None:
vectorized = True
significance_function = poisson_asimov_significance
fig, ax = plt.subplots()
ax2 = ax.twinx()
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
for (scores, y, w, label), col in zip(
[(self.scores_train, self.y_train, self.w_train, "train"),
(self.scores_test, self.y_test, self.w_test, "test")],
colors
):
s_sumws, s_errs, b_sumws, b_errs, thresholds = self.calc_s_ds_b_db(scores, y, w)
stepsize = int(len(s_sumws))/int(maxsteps)
if stepsize == 0:
stepsize = 1
s_sumws = s_sumws[::stepsize]*lumifactor*self.step_signal
s_errs = s_errs[::stepsize]*lumifactor*self.step_signal
b_sumws = b_sumws[::stepsize]*lumifactor*self.step_bkg
b_errs = b_errs[::stepsize]*lumifactor*self.step_bkg
nonzero_b = np.where(b_sumws!=0)[0]
s_sumws = s_sumws[nonzero_b]
s_errs = s_errs[nonzero_b]
b_sumws = b_sumws[nonzero_b]
b_errs = b_errs[nonzero_b]
thresholds = thresholds[nonzero_b]
if not vectorized:
zs = []
for s, ds, b, db in zip(s_sumws, s_errs, b_sumws, b_errs):
zs.append(significance_function(s, ds, b, db))
else:
zs = significance_function(s_sumws, s_errs, b_sumws, b_errs)
ax.plot(s_sumws/s_sumws[-1], zs, label=label, color=col)
ax2.plot(s_sumws/s_sumws[-1], thresholds, "--", color=col)
ax.set_xlabel("Signal efficiency")
ax.set_ylabel("Significance")
ax.set_xlim(0, 1)
ax2.set_ylabel("Threshold")
ax.legend()
return save_show(plt, fig, os.path.join(self.project_dir, "significances.pdf"))
@property
def csv_hist(self):
with open(os.path.join(self.project_dir, "training.log")) as f:
reader = csv.reader(f)
history_list = list(reader)
hist_dict = {}
for hist_key_index, hist_key in enumerate(history_list[0]):
hist_dict[hist_key] = [float(line[hist_key_index]) for line in history_list[1:]]
return hist_dict
Nikolai.Hartmann
committed
def plot_loss(self, all_trainings=False, log=False, ylim=None, xlim=None):
"""
Plot the value of the loss function for each epoch
:param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used)
"""
if all_trainings:
hist_dict = self.csv_hist
else:
hist_dict = self.history.history
Nikolai.Hartmann
committed
if (not 'loss' in hist_dict) or (not 'val_loss' in hist_dict):
logger.warning("No previous history found for plotting, try global history")
hist_dict = self.csv_hist
plt.plot(hist_dict['loss'])
plt.plot(hist_dict['val_loss'])
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['training data','validation data'], loc='upper left')
Nikolai.Hartmann
committed
if xlim is not None:
plt.xlim(*xlim)
plt.savefig(os.path.join(self.project_dir, "losses.pdf"))
def plot_accuracy(self, all_trainings=False, log=False, acc_suffix="weighted_acc"):
"""
Plot the value of the accuracy metric for each epoch
:param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used)
"""
if all_trainings:
hist_dict = self.csv_hist
else:
hist_dict = self.history.history
if (not acc_suffix in hist_dict) or (not 'val_'+acc_suffix in hist_dict):
Nikolai.Hartmann
committed
logger.warning("No previous history found for plotting, try global history")
hist_dict = self.csv_hist
logger.info("Plot accuracy")
plt.plot(hist_dict[acc_suffix])
plt.plot(hist_dict['val_'+acc_suffix])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['training data', 'validation data'], loc='upper left')
plt.savefig(os.path.join(self.project_dir, "accuracy.pdf"))
def plot_all(self):
self.plot_ROC()
self.plot_loss()
self.plot_score()
self.plot_weights()
def to_DataFrame(self):
df = pd.DataFrame(np.concatenate([self.x_train, self.x_test]), columns=self.fields)
df["weight"] = np.concatenate([self.w_train, self.w_test])
df["labels"] = pd.Categorical.from_codes(
np.concatenate([self.y_train, self.y_test]),
categories=["background", "signal"]
)
Nikolai.Hartmann
committed
try:
df[identifier] = np.concatenate([self.s_eventlist_train[identifier],
self.b_eventlist_train[identifier],
-1*np.ones(len(self.x_test), dtype="i8")])
except IOError:
logger.warning("Can't find eventlist - DataFrame won't contain identifiers")
df["is_train"] = np.concatenate([np.ones(len(self.x_train), dtype=np.bool),
np.zeros(len(self.x_test), dtype=np.bool)])
def create_getter(dataset_name):
def getx(self):
if getattr(self, "_"+dataset_name) is None:
self._load_from_hdf5(dataset_name)
return getattr(self, "_"+dataset_name)
return getx
def create_setter(dataset_name):
def setx(self, value):
setattr(self, "_"+dataset_name, value)
return setx
# define getters and setters for all datasets
for dataset_name in ClassificationProject.dataset_names:
setattr(ClassificationProject, dataset_name, property(create_getter(dataset_name),
create_setter(dataset_name)))
class ClassificationProjectDataFrame(ClassificationProject):
"""
A little hack to initialize a ClassificationProject from a pandas DataFrame instead of ROOT TTrees
"""
def _init_from_args(self,
name,
df,
input_columns,
weight_column="weights",
label_column="labels",
signal_label="signal",
background_label="background",
split_mode="split_column",
split_column="is_train",
**kwargs):
Nikolai.Hartmann
committed
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
self.df = df
self.input_columns = input_columns
self.weight_column = weight_column
self.label_column = label_column
self.signal_label = signal_label
self.background_label = background_label
if split_mode != "split_column":
raise NotImplementedError("'split_column' is the only currently supported split mode")
self.split_mode = split_mode
self.split_column = split_column
super(ClassificationProjectDataFrame, self).__init__(name,
signal_trees=[], bkg_trees=[], branches=[], weight_expr="1",
**kwargs)
self._x_train = None
self._x_test = None
self._y_train = None
self._y_test = None
self._w_train = None
self._w_test = None
@property
def x_train(self):
if self._x_train is None:
self._x_train = self.df[self.df[self.split_column]][self.input_columns].values
return self._x_train
@x_train.setter
def x_train(self, value):
self._x_train = value
@property
def x_test(self):
if self._x_test is None:
self._x_test = self.df[~self.df[self.split_column]][self.input_columns].values
return self._x_test
@x_test.setter
def x_test(self, value):
self._x_test = value
@property
def y_train(self):
if self._y_train is None:
self._y_train = (self.df[self.df[self.split_column]][self.label_column] == self.signal_label).values
return self._y_train
@y_train.setter
def y_train(self, value):
self._y_train = value
@property
def y_test(self):
if self._y_test is None:
self._y_test = (self.df[~self.df[self.split_column]][self.label_column] == self.signal_label).values
return self._y_test
@y_test.setter
def y_test(self, value):
self._y_test = value
@property
def w_train(self):
if self._w_train is None:
self._w_train = self.df[self.df[self.split_column]][self.weight_column].values
return self._w_train
@w_train.setter
def w_train(self, value):
self._w_train = value
@property
def w_test(self):
if self._w_test is None:
self._w_test = self.df[~self.df[self.split_column]][self.weight_column].values
return self._w_test
@w_test.setter
def w_test(self, value):
self._w_test = value
@property
def fields(self):
return self.input_columns
def load(self, reload=False):
if reload:
self.data_loaded = False
self.data_transformed = False
self._x_train = None
self._x_test = None
self._y_train = None
self._y_test = None
self._w_train = None
self._w_test = None
if not self.data_transformed:
self._transform_data()
class ClassificationProjectRNN(ClassificationProject):
"""
A little wrapper to use recurrent units for things like jet collections
"""
def _init_from_args(self, name,
recurrent_field_names=None,
rnn_layer_nodes=32,
mask_value=-999,
**kwargs):
[["jet1Pt", "jet1Eta", "jet1Phi"],
["jet2Pt", "jet2Eta", "jet2Phi"],
["jet3Pt", "jet3Eta", "jet3Phi"]],
[["lep1Pt", "lep1Eta", "lep1Phi", "lep1flav"],
["lep2Pt", "lep2Eta", "lep2Phi", "lep2flav"]],
"""
super(ClassificationProjectRNN, self)._init_from_args(name, **kwargs)
self._write_info("project_type", "ClassificationProjectRNN")
self.recurrent_field_names = recurrent_field_names
if self.recurrent_field_names is None:
self.recurrent_field_names = []
self.rnn_layer_nodes = rnn_layer_nodes
self.mask_value = mask_value
# convert to of indices
self.recurrent_field_idx = []
for field_name_list in self.recurrent_field_names:
field_names = np.array([field_name_list])
if field_names.dtype == np.object:
raise ValueError(
"Invalid entry for recurrent fields: {} - "
"please ensure that the length for all elements in the list is equal"
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
field_idx = (
np.array([self.fields.index(field_name)
for field_name in field_names.reshape(-1)])
.reshape(field_names.shape)
)
self.recurrent_field_idx.append(field_idx)
self.flat_fields = []
for field in self.fields:
if any(self.fields.index(field) in field_idx.reshape(-1) for field_idx in self.recurrent_field_idx):
continue
self.flat_fields.append(field)
if self.scaler_type != "WeightedRobustScaler":
raise NotImplementedError(
"Invalid scaler '{}' - only WeightedRobustScaler is currently supported for RNN"
.format(self.scaler_type)
)
def _transform_data(self):
self.x_train[self.x_train == self.mask_value] = np.nan
self.x_test[self.x_test == self.mask_value] = np.nan
super(ClassificationProjectRNN, self)._transform_data()
self.x_train[np.isnan(self.x_train)] = self.mask_value
self.x_test[np.isnan(self.x_test)] = self.mask_value
def model(self):
if self._model is None:
# following the setup from the tutorial:
# https://github.com/YaleATLAS/CERNDeepLearningTutorial
rnn_inputs = []
rnn_channels = []
for field_idx in self.recurrent_field_idx:
chan_inp = Input(field_idx.shape[1:])
channel = Masking(mask_value=self.mask_value)(chan_inp)
channel = GRU(self.rnn_layer_nodes)(channel)
# TODO: configure dropout for recurrent layers
#channel = Dropout(0.3)(channel)
rnn_inputs.append(chan_inp)
rnn_channels.append(channel)
flat_input = Input((len(self.flat_fields),))
flat_channel = Dropout(rate=self.dropout_input)(flat_input)
else:
flat_channel = flat_input
combined = concatenate(rnn_channels+[flat_channel])
for node_count, dropout_fraction in zip(self.nodes, self.dropout):
combined = Dense(node_count, activation=self.activation_function)(combined)
if (dropout_fraction is not None) and (dropout_fraction > 0):
combined = Dropout(rate=dropout_fraction)(combined)
combined = Dense(1, activation=self.activation_function_output)(combined)
self._model = Model(inputs=rnn_inputs+[flat_input], outputs=combined)
self._compile_or_load_model()
def train(self, epochs=10):
for branch_index, branch in enumerate(self.fields):
self.plot_input(branch_index)
self.total_epochs = self._read_info("epochs", 0)
try:
self.is_training = True
logger.info("Training on batches for RNN")
# note: the batches have class_weight already applied
self.model.fit_generator(self.yield_batch(),
steps_per_epoch=int(len(self.training_data[0])/self.batch_size),
epochs=epochs,
callbacks=self.callbacks_list)
self.is_training = False
except KeyboardInterrupt:
logger.info("Interrupt training - continue with rest")
def get_input_list(self, x):
"Format the input starting from flat ntuple"
x_input = []
for field_idx in self.recurrent_field_idx:
x_recurrent = x[:,field_idx.reshape(-1)].reshape(-1, *field_idx.shape[1:])
x_flat = x[:,[self.fields.index(field_name) for field_name in self.flat_fields]]
x_input.append(x_flat)
x_train, y_train, w_train = self.training_data
shuffled_idx = np.random.permutation(len(x_train))
for start in range(0, len(shuffled_idx), int(self.batch_size)):
x_batch = x_train[shuffled_idx[start:start+int(self.batch_size)]]
y_batch = y_train[shuffled_idx[start:start+int(self.batch_size)]]
w_batch = w_train[shuffled_idx[start:start+int(self.batch_size)]]
x_input = self.get_input_list(x_batch)
yield (x_input, y_batch, w_batch)
"class weighted validation data. Attention: Shuffle training data before using this!"
x_val, y_val, w_val = super(ClassificationProjectRNN, self).validation_data
x_val_input = self.get_input_list(x_val)
return x_val_input, y_val, w_val
def evaluate_train_test(self, do_train=True, do_test=True, batch_size=10000, mode=None):
logger.info("Reloading (and re-transforming) unshuffled training data")
self.load(reload=True)
if mode is not None:
self._write_info("scores_mode", mode)
def eval_score(data_name):
logger.info("Create/Update scores for {} sample".format(data_name))
n_events = len(getattr(self, "x_"+data_name))
setattr(self, "scores_"+data_name, np.empty(n_events))
for start in range(0, n_events, batch_size):
stop = start+batch_size
getattr(self, "scores_"+data_name)[start:stop] = (
self.predict(
self.get_input_list(getattr(self, "x_"+data_name)[start:stop]),
mode=mode
).reshape(-1)
)
self._dump_to_hdf5("scores_"+data_name)
if do_test:
eval_score("test")
if do_train:
eval_score("train")
logger.debug("Evaluate score for {}".format(x_eval))
x_eval = np.array(x_eval) # copy
x_eval[x_eval==self.mask_value] = np.nan
x_eval = self.scaler.transform(x_eval)
x_eval[np.isnan(x_eval)] = self.mask_value
logger.debug("Evaluate for transformed array: {}".format(x_eval))
return self.predict(self.get_input_list(x_eval), mode=mode)
logging.getLogger("KerasROOTClassification").setLevel(logging.INFO)
#logging.getLogger("KerasROOTClassification").setLevel(logging.DEBUG)
filename = "/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root"
c = ClassificationProject("test4",
signal_trees = [(filename, "GG_oneStep_1705_1105_505_NoSys")],
bkg_trees = [(filename, "ttbar_NoSys"),
(filename, "wjets_Sherpa221_NoSys")
],
optimizer="Adam",
#optimizer="SGD",
#optimizer_opts=dict(lr=100., decay=1e-6, momentum=0.9),
earlystopping_opts=dict(monitor='val_loss',
min_delta=0, patience=2, verbose=0, mode='auto'),
branches = ["met", "mt"],
weight_expr = "eventWeight*genWeight",
identifiers = ["DatasetNumber", "EventNumber"],
step_bkg = 100)
#c.plot_all()
# c.write_friend_tree("test4_score",
# source_filename=filename, source_treename="GG_oneStep_1705_1105_505_NoSys",
# target_filename="friend.root", target_treename="test4_score")
# c.write_friend_tree("test4_score",
# source_filename=filename, source_treename="ttbar_NoSys",
# target_filename="friend_ttbar_NoSys.root", target_treename="test4_score")