Newer
Older
plot_range = weighted_quantile(
self.x_train[:,var_index], [0.01, 0.99],
sample_weight=self.w_train*np.array(self.class_weight)[self.y_train.astype(int)]
)
logger.debug("Calculated range based on percentiles: {}".format(plot_range))
try:
centers_sig, hist_sig, _ = self.get_bin_centered_hist(sig, scale_factor=self.class_weight[1], bins=50, range=plot_range, weights=sig_weights)
centers_bkg, hist_bkg, _ = self.get_bin_centered_hist(bkg, scale_factor=self.class_weight[0], bins=50, range=plot_range, weights=bkg_weights)
except ValueError:
# weird, probably not always working workaround for a numpy bug
plot_range = (float("{:.3f}".format(plot_range[0])), float("{:.3f}".format(plot_range[1])))
logger.warn("Got a value error during plotting, maybe this is due to a numpy bug - changing range to {}".format(plot_range))
centers_sig, hist_sig, _ = self.get_bin_centered_hist(sig, scale_factor=self.class_weight[1], bins=50, range=plot_range, weights=sig_weights)
centers_bkg, hist_bkg, _ = self.get_bin_centered_hist(bkg, scale_factor=self.class_weight[0], bins=50, range=plot_range, weights=bkg_weights)
Nikolai.Hartmann
committed
width = centers_sig[1]-centers_sig[0]
ax.bar(centers_bkg, hist_bkg, color="b", alpha=0.5, width=width)
ax.bar(centers_sig, hist_sig, color="r", alpha=0.5, width=width)
ax.set_xlabel(branch+" (transformed)")
plot_dir = os.path.join(self.project_dir, "plots")
if not os.path.exists(plot_dir):
os.mkdir(plot_dir)
fig.savefig(os.path.join(plot_dir, "var_{}.pdf".format(var_index)))
def plot_weights(self):
fig, ax = plt.subplots()
bkg = self.w_train[self.y_train == 0]
sig = self.w_train[self.y_train == 1]
ax.hist(bkg, bins=100, color="b", alpha=0.5)
fig.savefig(os.path.join(self.project_dir, "eventweights_bkg.pdf"))
fig, ax = plt.subplots()
ax.hist(sig, bins=100, color="r", alpha=0.5)
fig.savefig(os.path.join(self.project_dir, "eventweights_sig.pdf"))
def plot_ROC(self, xlim=(0,1), ylim=(0,1)):
logger.info("Plot ROC curve")
plt.grid(color='gray', linestyle='--', linewidth=1)
for y, scores, weight, label in [
(self.y_train, self.scores_train, self.w_train, "train"),
(self.y_test, self.scores_test, self.w_test, "test")
]:
fpr, tpr, threshold = roc_curve(y, scores, sample_weight = weight)
fpr = 1.0 - fpr # background rejection
try:
roc_auc = auc(tpr, fpr)
except ValueError:
logger.warning("Got a value error from auc - trying to rerun with reorder=True")
roc_auc = auc(tpr, fpr, reorder=True)
plt.plot(tpr, fpr, label=str(self.name + " {} (AUC = {:.3f})".format(label, roc_auc)))
plt.plot([0,1],[1,0], linestyle='--', color='black', label='Luck')
plt.title('Receiver operating characteristic')
plt.xlim(*xlim)
plt.ylim(*ylim)
# plt.xticks(np.arange(0,1,0.1))
# plt.yticks(np.arange(0,1,0.1))
plt.legend(loc='lower left', framealpha=1.0)
plt.savefig(os.path.join(self.project_dir, "ROC.pdf"))
plt.clf()
def plot_score(self, log=True, plot_opts=dict(bins=50, range=(0, 1)), ylim=None, xlim=None):
centers_sig_train, hist_sig_train, _ = self.get_bin_centered_hist(self.scores_train[self.y_train==1].reshape(-1), density=True, weights=self.w_train[self.y_train==1], **plot_opts)
centers_bkg_train, hist_bkg_train, _ = self.get_bin_centered_hist(self.scores_train[self.y_train==0].reshape(-1), density=True, weights=self.w_train[self.y_train==0], **plot_opts)
centers_sig_test, hist_sig_test, rel_errors_sig_test = self.get_bin_centered_hist(self.scores_test[self.y_test==1].reshape(-1), density=True, weights=self.w_test[self.y_test==1], **plot_opts)
centers_bkg_test, hist_bkg_test, rel_errors_bkg_test = self.get_bin_centered_hist(self.scores_test[self.y_test==0].reshape(-1), density=True, weights=self.w_test[self.y_test==0], **plot_opts)
errors_sig_test = hist_sig_test*rel_errors_sig_test
errors_bkg_test = hist_bkg_test*rel_errors_bkg_test
fig, ax = plt.subplots()
width = centers_sig_train[1]-centers_sig_train[0]
ax.bar(centers_bkg_train, hist_bkg_train, color="b", alpha=0.5, width=width, label="background train")
ax.bar(centers_sig_train, hist_sig_train, color="r", alpha=0.5, width=width, label="signal train")
ax.errorbar(centers_bkg_test, hist_bkg_test, fmt="bo", yerr=errors_bkg_test, label="background test")
ax.errorbar(centers_sig_test, hist_sig_test, fmt="ro", yerr=errors_sig_test, label="signal test")
if ylim is not None:
ax.set_ylim(*ylim)
if xlim is not None:
ax.set_xlim(*xlim)
ax.set_xlabel("NN output")
fig.legend(loc='upper center', framealpha=0.5)
fig.savefig(os.path.join(self.project_dir, "scores.pdf"))
def plot_significance(self, lumifactor=1., significanceFunction=None, plot_opts=dict(bins=50, range=(0, 1))):
logger.info("Plot significances")
centers_sig_train, hist_sig_train, rel_errors_sig_train = self.get_bin_centered_hist(self.scores_train[self.y_train==1].reshape(-1), weights=self.w_train[self.y_train==1], **plot_opts)
centers_bkg_train, hist_bkg_train, rel_errors_bkg_train = self.get_bin_centered_hist(self.scores_train[self.y_train==0].reshape(-1), weights=self.w_train[self.y_train==0], **plot_opts)
centers_sig_test, hist_sig_test, rel_errors_sig_test = self.get_bin_centered_hist(self.scores_test[self.y_test==1].reshape(-1), weights=self.w_test[self.y_test==1], **plot_opts)
centers_bkg_test, hist_bkg_test, rel_errors_bkg_test = self.get_bin_centered_hist(self.scores_test[self.y_test==0].reshape(-1), weights=self.w_test[self.y_test==0], **plot_opts)
significances_train = []
significances_test = []
for hist_sig, hist_bkg, rel_errors_sig, rel_errors_bkg, significances, w, y in [
(hist_sig_train, hist_bkg_train, rel_errors_sig_train, rel_errors_bkg_train, significances_train, self.w_train, self.y_train),
(hist_sig_test, hist_bkg_test, rel_errors_sig_test, rel_errors_bkg_test, significances_test, self.w_test, self.y_test),
# factor to rescale due to using only a fraction of events (training and test samples)
# normfactor_sig = (np.sum(self.w_train[self.y_train==1])+np.sum(self.w_test[self.y_test==1]))/np.sum(w[y==1])
# normfactor_bkg = (np.sum(self.w_train[self.y_train==0])+np.sum(self.w_test[self.y_test==0]))/np.sum(w[y==0])
normfactor_sig = self.step_signal
normfactor_bkg = self.step_bkg
# first set nan values to 0 and multiply by lumi
for arr in hist_sig, hist_bkg, rel_errors_bkg:
arr[np.isnan(arr)] = 0
hist_sig *= lumifactor*normfactor_sig
hist_bkg *= lumifactor*normfactor_bkg
for i in range(len(hist_sig)):
s = sum(hist_sig[i:])
b = sum(hist_bkg[i:])
db = math.sqrt(sum((rel_errors_bkg[i:]*hist_bkg[i:])**2))
if significanceFunction is None:
try:
z = s/math.sqrt(b+db**2)
except (ZeroDivisionError, ValueError) as e:
z = 0
else:
z = significanceFunction(s, b, db)
if z == float('inf'):
z = 0
logger.debug("s, b, db, z = {}, {}, {}, {}".format(s, b, db, z))
significances.append(z)
fig, ax = plt.subplots()
width = centers_sig_train[1]-centers_sig_train[0]
ax.plot(centers_bkg_train, significances_train, label="train, Z_max={}".format(np.amax(significances_train)))
ax.plot(centers_bkg_test, significances_test, label="test, Z_max={}".format(np.amax(significances_test)))
ax.set_xlabel("Cut on NN score")
ax.set_ylabel("Significance")
ax.legend(loc='lower center', framealpha=0.5)
fig.savefig(os.path.join(self.project_dir, "significances.pdf"))
@property
def csv_hist(self):
with open(os.path.join(self.project_dir, "training.log")) as f:
reader = csv.reader(f)
history_list = list(reader)
hist_dict = {}
for hist_key_index, hist_key in enumerate(history_list[0]):
hist_dict[hist_key] = [float(line[hist_key_index]) for line in history_list[1:]]
return hist_dict
Nikolai.Hartmann
committed
def plot_loss(self, all_trainings=False, log=False, ylim=None, xlim=None):
"""
Plot the value of the loss function for each epoch
:param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used)
"""
if all_trainings:
hist_dict = self.csv_hist
else:
hist_dict = self.history.history
Nikolai.Hartmann
committed
if (not 'loss' in hist_dict) or (not 'val_loss' in hist_dict):
logger.warning("No previous history found for plotting, try global history")
hist_dict = self.csv_hist
plt.plot(hist_dict['loss'])
plt.plot(hist_dict['val_loss'])
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['training data','validation data'], loc='upper left')
Nikolai.Hartmann
committed
if xlim is not None:
plt.xlim(*xlim)
plt.savefig(os.path.join(self.project_dir, "losses.pdf"))
def plot_accuracy(self, all_trainings=False, log=False, acc_suffix="weighted_acc"):
"""
Plot the value of the accuracy metric for each epoch
:param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used)
"""
if all_trainings:
hist_dict = self.csv_hist
else:
hist_dict = self.history.history
if (not acc_suffix in hist_dict) or (not 'val_'+acc_suffix in hist_dict):
Nikolai.Hartmann
committed
logger.warning("No previous history found for plotting, try global history")
hist_dict = self.csv_hist
logger.info("Plot accuracy")
plt.plot(hist_dict[acc_suffix])
plt.plot(hist_dict['val_'+acc_suffix])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['training data', 'validation data'], loc='upper left')
plt.savefig(os.path.join(self.project_dir, "accuracy.pdf"))
def plot_all(self):
self.plot_ROC()
self.plot_loss()
self.plot_score()
self.plot_weights()
def to_DataFrame(self):
df = pd.DataFrame(np.concatenate([self.x_train, self.x_test]), columns=self.fields)
df["weight"] = np.concatenate([self.w_train, self.w_test])
df["labels"] = pd.Categorical.from_codes(
np.concatenate([self.y_train, self.y_test]),
categories=["background", "signal"]
)
Nikolai.Hartmann
committed
try:
df[identifier] = np.concatenate([self.s_eventlist_train[identifier],
self.b_eventlist_train[identifier],
-1*np.ones(len(self.x_test), dtype="i8")])
except IOError:
logger.warning("Can't find eventlist - DataFrame won't contain identifiers")
df["is_train"] = np.concatenate([np.ones(len(self.x_train), dtype=np.bool),
np.zeros(len(self.x_test), dtype=np.bool)])
def create_getter(dataset_name):
def getx(self):
if getattr(self, "_"+dataset_name) is None:
self._load_from_hdf5(dataset_name)
return getattr(self, "_"+dataset_name)
return getx
def create_setter(dataset_name):
def setx(self, value):
setattr(self, "_"+dataset_name, value)
return setx
# define getters and setters for all datasets
for dataset_name in ClassificationProject.dataset_names:
setattr(ClassificationProject, dataset_name, property(create_getter(dataset_name),
create_setter(dataset_name)))
class ClassificationProjectDataFrame(ClassificationProject):
"""
A little hack to initialize a ClassificationProject from a pandas DataFrame instead of ROOT TTrees
"""
def _init_from_args(self,
name,
df,
input_columns,
weight_column="weights",
label_column="labels",
signal_label="signal",
background_label="background",
split_mode="split_column",
split_column="is_train",
**kwargs):
Nikolai.Hartmann
committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
self.df = df
self.input_columns = input_columns
self.weight_column = weight_column
self.label_column = label_column
self.signal_label = signal_label
self.background_label = background_label
if split_mode != "split_column":
raise NotImplementedError("'split_column' is the only currently supported split mode")
self.split_mode = split_mode
self.split_column = split_column
super(ClassificationProjectDataFrame, self).__init__(name,
signal_trees=[], bkg_trees=[], branches=[], weight_expr="1",
**kwargs)
self._x_train = None
self._x_test = None
self._y_train = None
self._y_test = None
self._w_train = None
self._w_test = None
@property
def x_train(self):
if self._x_train is None:
self._x_train = self.df[self.df[self.split_column]][self.input_columns].values
return self._x_train
@x_train.setter
def x_train(self, value):
self._x_train = value
@property
def x_test(self):
if self._x_test is None:
self._x_test = self.df[~self.df[self.split_column]][self.input_columns].values
return self._x_test
@x_test.setter
def x_test(self, value):
self._x_test = value
@property
def y_train(self):
if self._y_train is None:
self._y_train = (self.df[self.df[self.split_column]][self.label_column] == self.signal_label).values
return self._y_train
@y_train.setter
def y_train(self, value):
self._y_train = value
@property
def y_test(self):
if self._y_test is None:
self._y_test = (self.df[~self.df[self.split_column]][self.label_column] == self.signal_label).values
return self._y_test
@y_test.setter
def y_test(self, value):
self._y_test = value
@property
def w_train(self):
if self._w_train is None:
self._w_train = self.df[self.df[self.split_column]][self.weight_column].values
return self._w_train
@w_train.setter
def w_train(self, value):
self._w_train = value
@property
def w_test(self):
if self._w_test is None:
self._w_test = self.df[~self.df[self.split_column]][self.weight_column].values
return self._w_test
@w_test.setter
def w_test(self, value):
self._w_test = value
@property
def fields(self):
return self.input_columns
def load(self, reload=False):
if reload:
self.data_loaded = False
self.data_transformed = False
self._x_train = None
self._x_test = None
self._y_train = None
self._y_test = None
self._w_train = None
self._w_test = None
if not self.data_transformed:
self._transform_data()
class ClassificationProjectRNN(ClassificationProject):
"""
A little wrapper to use recurrent units for things like jet collections
"""
def _init_from_args(self, name,
recurrent_field_names=None,
rnn_layer_nodes=32,
mask_value=-999,
**kwargs):
[["jet1Pt", "jet1Eta", "jet1Phi"],
["jet2Pt", "jet2Eta", "jet2Phi"],
["jet3Pt", "jet3Eta", "jet3Phi"]],
[["lep1Pt", "lep1Eta", "lep1Phi", "lep1flav"],
["lep2Pt", "lep2Eta", "lep2Phi", "lep2flav"]],
"""
super(ClassificationProjectRNN, self)._init_from_args(name, **kwargs)
self._write_info("project_type", "ClassificationProjectRNN")
self.recurrent_field_names = recurrent_field_names
if self.recurrent_field_names is None:
self.recurrent_field_names = []
self.rnn_layer_nodes = rnn_layer_nodes
self.mask_value = mask_value
# convert to of indices
self.recurrent_field_idx = []
for field_name_list in self.recurrent_field_names:
field_names = np.array([field_name_list])
if field_names.dtype == np.object:
raise ValueError(
"Invalid entry for recurrent fields: {} - "
"please ensure that the length for all elements in the list is equal"
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
field_idx = (
np.array([self.fields.index(field_name)
for field_name in field_names.reshape(-1)])
.reshape(field_names.shape)
)
self.recurrent_field_idx.append(field_idx)
self.flat_fields = []
for field in self.fields:
if any(self.fields.index(field) in field_idx.reshape(-1) for field_idx in self.recurrent_field_idx):
continue
self.flat_fields.append(field)
if self.scaler_type != "WeightedRobustScaler":
raise NotImplementedError(
"Invalid scaler '{}' - only WeightedRobustScaler is currently supported for RNN"
.format(self.scaler_type)
)
def _transform_data(self):
self.x_train[self.x_train == self.mask_value] = np.nan
self.x_test[self.x_test == self.mask_value] = np.nan
super(ClassificationProjectRNN, self)._transform_data()
self.x_train[np.isnan(self.x_train)] = self.mask_value
self.x_test[np.isnan(self.x_test)] = self.mask_value
def model(self):
if self._model is None:
# following the setup from the tutorial:
# https://github.com/YaleATLAS/CERNDeepLearningTutorial
rnn_inputs = []
rnn_channels = []
for field_idx in self.recurrent_field_idx:
chan_inp = Input(field_idx.shape[1:])
channel = Masking(mask_value=self.mask_value)(chan_inp)
channel = GRU(self.rnn_layer_nodes)(channel)
# TODO: configure dropout for recurrent layers
#channel = Dropout(0.3)(channel)
rnn_inputs.append(chan_inp)
rnn_channels.append(channel)
flat_input = Input((len(self.flat_fields),))
flat_channel = Dropout(rate=self.dropout_input)(flat_input)
else:
flat_channel = flat_input
combined = concatenate(rnn_channels+[flat_channel])
for node_count, dropout_fraction in zip(self.nodes, self.dropout):
combined = Dense(node_count, activation=self.activation_function)(combined)
if (dropout_fraction is not None) and (dropout_fraction > 0):
combined = Dropout(rate=dropout_fraction)(combined)
combined = Dense(1, activation=self.activation_function_output)(combined)
self._model = Model(inputs=rnn_inputs+[flat_input], outputs=combined)
self._compile_or_load_model()
def train(self, epochs=10):
self.load()
for branch_index, branch in enumerate(self.fields):
self.plot_input(branch_index)
self.total_epochs = self._read_info("epochs", 0)
try:
self.shuffle_training_data() # needed here too, in order to get correct validation data
self.is_training = True
logger.info("Training on batches for RNN")
# note: the batches have class_weight already applied
self.model.fit_generator(self.yield_batch(),
steps_per_epoch=int(len(self.training_data[0])/self.batch_size),
epochs=epochs,
validation_data=self.class_weighted_validation_data,
callbacks=self.callbacks_list)
self.is_training = False
except KeyboardInterrupt:
logger.info("Interrupt training - continue with rest")
def get_input_list(self, x):
"Format the input starting from flat ntuple"
x_input = []
for field_idx in self.recurrent_field_idx:
x_recurrent = x[:,field_idx.reshape(-1)].reshape(-1, *field_idx.shape[1:])
x_flat = x[:,[self.fields.index(field_name) for field_name in self.flat_fields]]
x_input.append(x_flat)
x_train, y_train, w_train = self.training_data
shuffled_idx = np.random.permutation(len(x_train))
for start in range(0, len(shuffled_idx), int(self.batch_size)):
x_batch = x_train[shuffled_idx[start:start+int(self.batch_size)]]
y_batch = y_train[shuffled_idx[start:start+int(self.batch_size)]]
w_batch = w_train[shuffled_idx[start:start+int(self.batch_size)]]
x_input = self.get_input_list(x_batch)
yield (x_input,
y_train[shuffled_idx[start:start+int(self.batch_size)]],
w_batch*np.array(self.class_weight)[y_batch.astype(int)]/self.mean_train_weight)
@property
def class_weighted_validation_data(self):
"class weighted validation data. Attention: Shuffle training data before using this!"
x_val, y_val, w_val = super(ClassificationProjectRNN, self).class_weighted_validation_data
x_val_input = self.get_input_list(x_val)
return x_val_input, y_val, w_val
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
def evaluate_train_test(self, do_train=True, do_test=True, batch_size=10000):
logger.info("Reloading (and re-transforming) unshuffled training data")
self.load(reload=True)
def eval_score(data_name):
logger.info("Create/Update scores for {} sample".format(data_name))
n_events = len(getattr(self, "x_"+data_name))
setattr(self, "scores_"+data_name, np.empty(n_events))
for start in range(0, n_events, batch_size):
stop = start+batch_size
getattr(self, "scores_"+data_name)[start:stop] = self.model.predict(self.get_input_list(getattr(self, "x_"+data_name)[start:stop])).reshape(-1)
self._dump_to_hdf5("scores_"+data_name)
if do_test:
eval_score("test")
if do_train:
eval_score("train")
def evaluate(self, x_eval):
logger.debug("Evaluate score for {}".format(x_eval))
x_eval = np.array(x_eval) # copy
x_eval[x_eval==self.mask_value] = np.nan
x_eval = self.scaler.transform(x_eval)
x_eval[np.isnan(x_eval)] = self.mask_value
logger.debug("Evaluate for transformed array: {}".format(x_eval))
return self.model.predict(self.get_input_list(x_eval))
logging.getLogger("KerasROOTClassification").setLevel(logging.INFO)
#logging.getLogger("KerasROOTClassification").setLevel(logging.DEBUG)
filename = "/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root"
c = ClassificationProject("test4",
signal_trees = [(filename, "GG_oneStep_1705_1105_505_NoSys")],
bkg_trees = [(filename, "ttbar_NoSys"),
(filename, "wjets_Sherpa221_NoSys")
],
optimizer="Adam",
#optimizer="SGD",
#optimizer_opts=dict(lr=100., decay=1e-6, momentum=0.9),
earlystopping_opts=dict(monitor='val_loss',
min_delta=0, patience=2, verbose=0, mode='auto'),
branches = ["met", "mt"],
weight_expr = "eventWeight*genWeight",
identifiers = ["DatasetNumber", "EventNumber"],
step_bkg = 100)
#c.plot_all()
# c.write_friend_tree("test4_score",
# source_filename=filename, source_treename="GG_oneStep_1705_1105_505_NoSys",
# target_filename="friend.root", target_treename="test4_score")
# c.write_friend_tree("test4_score",
# source_filename=filename, source_treename="ttbar_NoSys",
# target_filename="friend_ttbar_NoSys.root", target_treename="test4_score")