Newer
Older
plt.plot([0,1],[1,0], linestyle='--', color='black', label='Luck')
plt.title('Receiver operating characteristic')
plt.xlim(*xlim)
plt.ylim(*ylim)
# plt.xticks(np.arange(0,1,0.1))
# plt.yticks(np.arange(0,1,0.1))
plt.legend(loc='lower left', framealpha=1.0)
plt.savefig(os.path.join(self.project_dir, "ROC.pdf"))
plt.clf()
def plot_score(self, log=True, plot_opts=dict(bins=50, range=(0, 1)), ylim=None, xlim=None):
centers_sig_train, hist_sig_train, _ = self.get_bin_centered_hist(self.scores_train[self.y_train==1].reshape(-1), density=True, weights=self.w_train[self.y_train==1], **plot_opts)
centers_bkg_train, hist_bkg_train, _ = self.get_bin_centered_hist(self.scores_train[self.y_train==0].reshape(-1), density=True, weights=self.w_train[self.y_train==0], **plot_opts)
centers_sig_test, hist_sig_test, rel_errors_sig_test = self.get_bin_centered_hist(self.scores_test[self.y_test==1].reshape(-1), density=True, weights=self.w_test[self.y_test==1], **plot_opts)
centers_bkg_test, hist_bkg_test, rel_errors_bkg_test = self.get_bin_centered_hist(self.scores_test[self.y_test==0].reshape(-1), density=True, weights=self.w_test[self.y_test==0], **plot_opts)
errors_sig_test = hist_sig_test*rel_errors_sig_test
errors_bkg_test = hist_bkg_test*rel_errors_bkg_test
fig, ax = plt.subplots()
width = centers_sig_train[1]-centers_sig_train[0]
ax.bar(centers_bkg_train, hist_bkg_train, color="b", alpha=0.5, width=width, label="background train")
ax.bar(centers_sig_train, hist_sig_train, color="r", alpha=0.5, width=width, label="signal train")
ax.errorbar(centers_bkg_test, hist_bkg_test, fmt="bo", yerr=errors_bkg_test, label="background test")
ax.errorbar(centers_sig_test, hist_sig_test, fmt="ro", yerr=errors_sig_test, label="signal test")
if ylim is not None:
ax.set_ylim(*ylim)
if xlim is not None:
ax.set_xlim(*xlim)
ax.set_xlabel("NN output")
fig.legend(loc='upper center', framealpha=0.5)
fig.savefig(os.path.join(self.project_dir, "scores.pdf"))
def plot_significance(self, lumifactor=1., significanceFunction=None, plot_opts=dict(bins=50, range=(0, 1))):
logger.info("Plot significances")
centers_sig_train, hist_sig_train, rel_errors_sig_train = self.get_bin_centered_hist(self.scores_train[self.y_train==1].reshape(-1), weights=self.w_train[self.y_train==1], **plot_opts)
centers_bkg_train, hist_bkg_train, rel_errors_bkg_train = self.get_bin_centered_hist(self.scores_train[self.y_train==0].reshape(-1), weights=self.w_train[self.y_train==0], **plot_opts)
centers_sig_test, hist_sig_test, rel_errors_sig_test = self.get_bin_centered_hist(self.scores_test[self.y_test==1].reshape(-1), weights=self.w_test[self.y_test==1], **plot_opts)
centers_bkg_test, hist_bkg_test, rel_errors_bkg_test = self.get_bin_centered_hist(self.scores_test[self.y_test==0].reshape(-1), weights=self.w_test[self.y_test==0], **plot_opts)
significances_train = []
significances_test = []
for hist_sig, hist_bkg, rel_errors_sig, rel_errors_bkg, significances, w, y in [
(hist_sig_train, hist_bkg_train, rel_errors_sig_train, rel_errors_bkg_train, significances_train, self.w_train, self.y_train),
(hist_sig_test, hist_bkg_test, rel_errors_sig_test, rel_errors_bkg_test, significances_test, self.w_test, self.y_test),
# factor to rescale due to using only a fraction of events (training and test samples)
# normfactor_sig = (np.sum(self.w_train[self.y_train==1])+np.sum(self.w_test[self.y_test==1]))/np.sum(w[y==1])
# normfactor_bkg = (np.sum(self.w_train[self.y_train==0])+np.sum(self.w_test[self.y_test==0]))/np.sum(w[y==0])
normfactor_sig = self.step_signal
normfactor_bkg = self.step_bkg
# first set nan values to 0 and multiply by lumi
for arr in hist_sig, hist_bkg, rel_errors_bkg:
arr[np.isnan(arr)] = 0
hist_sig *= lumifactor*normfactor_sig
hist_bkg *= lumifactor*normfactor_bkg
for i in range(len(hist_sig)):
s = sum(hist_sig[i:])
b = sum(hist_bkg[i:])
db = math.sqrt(sum((rel_errors_bkg[i:]*hist_bkg[i:])**2))
if significanceFunction is None:
try:
z = s/math.sqrt(b+db**2)
except (ZeroDivisionError, ValueError) as e:
z = 0
else:
z = significanceFunction(s, b, db)
if z == float('inf'):
z = 0
logger.debug("s, b, db, z = {}, {}, {}, {}".format(s, b, db, z))
significances.append(z)
fig, ax = plt.subplots()
width = centers_sig_train[1]-centers_sig_train[0]
ax.plot(centers_bkg_train, significances_train, label="train, Z_max={}".format(np.amax(significances_train)))
ax.plot(centers_bkg_test, significances_test, label="test, Z_max={}".format(np.amax(significances_test)))
ax.set_xlabel("Cut on NN score")
ax.set_ylabel("Significance")
ax.legend(loc='lower center', framealpha=0.5)
fig.savefig(os.path.join(self.project_dir, "significances.pdf"))
@property
def csv_hist(self):
with open(os.path.join(self.project_dir, "training.log")) as f:
reader = csv.reader(f)
history_list = list(reader)
hist_dict = {}
for hist_key_index, hist_key in enumerate(history_list[0]):
hist_dict[hist_key] = [float(line[hist_key_index]) for line in history_list[1:]]
return hist_dict
Nikolai.Hartmann
committed
def plot_loss(self, all_trainings=False, log=False, ylim=None, xlim=None):
"""
Plot the value of the loss function for each epoch
:param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used)
"""
if all_trainings:
hist_dict = self.csv_hist
else:
hist_dict = self.history.history
Nikolai.Hartmann
committed
if (not 'loss' in hist_dict) or (not 'val_loss' in hist_dict):
logger.warning("No previous history found for plotting, try global history")
hist_dict = self.csv_hist
plt.plot(hist_dict['loss'])
plt.plot(hist_dict['val_loss'])
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['training data','validation data'], loc='upper left')
Nikolai.Hartmann
committed
if xlim is not None:
plt.xlim(*xlim)
plt.savefig(os.path.join(self.project_dir, "losses.pdf"))
def plot_accuracy(self, all_trainings=False, log=False, acc_suffix="weighted_acc"):
"""
Plot the value of the accuracy metric for each epoch
:param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used)
"""
if all_trainings:
hist_dict = self.csv_hist
else:
hist_dict = self.history.history
if (not acc_suffix in hist_dict) or (not 'val_'+acc_suffix in hist_dict):
Nikolai.Hartmann
committed
logger.warning("No previous history found for plotting, try global history")
hist_dict = self.csv_hist
logger.info("Plot accuracy")
plt.plot(hist_dict[acc_suffix])
plt.plot(hist_dict['val_'+acc_suffix])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['training data', 'validation data'], loc='upper left')
plt.savefig(os.path.join(self.project_dir, "accuracy.pdf"))
def plot_all(self):
self.plot_ROC()
self.plot_loss()
self.plot_score()
self.plot_weights()
def to_DataFrame(self):
df = pd.DataFrame(np.concatenate([self.x_train, self.x_test]), columns=self.fields)
df["weight"] = np.concatenate([self.w_train, self.w_test])
df["labels"] = pd.Categorical.from_codes(
np.concatenate([self.y_train, self.y_test]),
categories=["background", "signal"]
)
for identifier in self.identifiers:
df[identifier] = np.concatenate([self.s_eventlist_train[identifier],
self.b_eventlist_train[identifier],
-1*np.ones(len(self.x_test), dtype="i8")])
df["is_train"] = np.concatenate([np.ones(len(self.x_train), dtype=np.bool),
np.zeros(len(self.x_test), dtype=np.bool)])
def create_getter(dataset_name):
def getx(self):
if getattr(self, "_"+dataset_name) is None:
self._load_from_hdf5(dataset_name)
return getattr(self, "_"+dataset_name)
return getx
def create_setter(dataset_name):
def setx(self, value):
setattr(self, "_"+dataset_name, value)
return setx
# define getters and setters for all datasets
for dataset_name in ClassificationProject.dataset_names:
setattr(ClassificationProject, dataset_name, property(create_getter(dataset_name),
create_setter(dataset_name)))
class ClassificationProjectDataFrame(ClassificationProject):
"""
A little hack to initialize a ClassificationProject from a pandas DataFrame instead of ROOT TTrees
"""
def __init__(self,
input_columns,
weight_column="weights",
label_column="labels",
signal_label="signal",
background_label="background",
split_mode="split_column",
split_colurm="is_train",
**kwargs):
pass
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
class ClassificationProjectRNN(ClassificationProject):
"""
A little wrapper to use recurrent units for things like jet collections
"""
def __init__(self,
recurrent_branches=None,
mask_value=-999,
**kwargs):
self.recurrent_branches = recurrent_branches
if self.recurrent_branches is None:
self.recurrent_branches = []
self.mask_value = mask_value
super(ClassificationProjectRNN, self).__init__()
@property
def model():
pass
def yield_batch(self):
while True:
permutation = np.random.permutation
x_train, y_train, w_train = self.training_data
n_training = len(x_train)
for batch_start in range(0, n_training, self.batch_size):
pass
# # shuffle the entries for this class label
# rn_state = np.random.get_state()
# x_train[y_train==class_label] = np.random.permutation(x_train[y_train==class_label])
# np.random.set_state(rn_state)
# w_train[y_train==class_label] = np.random.permutation(w_train[y_train==class_label])
# # yield them batch wise
# for start in range(0, len(x_train[y_train==class_label]), int(self.batch_size/2)):
# yield (x_train[y_train==class_label][start:start+int(self.batch_size/2)],
# y_train[y_train==class_label][start:start+int(self.batch_size/2)],
# w_train[y_train==class_label][start:start+int(self.batch_size/2)]*self.balanced_class_weight[class_label])
# restart
logging.getLogger("KerasROOTClassification").setLevel(logging.INFO)
#logging.getLogger("KerasROOTClassification").setLevel(logging.DEBUG)
filename = "/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root"
c = ClassificationProject("test4",
signal_trees = [(filename, "GG_oneStep_1705_1105_505_NoSys")],
bkg_trees = [(filename, "ttbar_NoSys"),
(filename, "wjets_Sherpa221_NoSys")
],
optimizer="Adam",
#optimizer="SGD",
#optimizer_opts=dict(lr=100., decay=1e-6, momentum=0.9),
earlystopping_opts=dict(monitor='val_loss',
min_delta=0, patience=2, verbose=0, mode='auto'),
branches = ["met", "mt"],
weight_expr = "eventWeight*genWeight",
identifiers = ["DatasetNumber", "EventNumber"],
step_bkg = 100)
#c.plot_all()
# c.write_friend_tree("test4_score",
# source_filename=filename, source_treename="GG_oneStep_1705_1105_505_NoSys",
# target_filename="friend.root", target_treename="test4_score")
# c.write_friend_tree("test4_score",
# source_filename=filename, source_treename="ttbar_NoSys",
# target_filename="friend_ttbar_NoSys.root", target_treename="test4_score")