Newer
Older
#!/usr/bin/env python
import sys
import argparse
import logging
logging.basicConfig()
import ROOT
ROOT.gROOT.SetBatch()
ROOT.PyConfig.IgnoreCommandLineOptions = True
from KerasROOTClassification import load_from_dir
from KerasROOTClassification.plotting import (
get_mean_event,
plot_NN_vs_var_2D,
plot_cond_avg_actmax_2D,
plot_NN_vs_var_2D_all,
from KerasROOTClassification.utils import get_single_neuron_function, get_max_activation_events, weighted_quantile
parser = argparse.ArgumentParser(description='Create various 2D plots for a single neuron')
parser.add_argument("project_dir")
parser.add_argument("output_filename")
parser.add_argument("varx")
parser.add_argument("vary")
choices=["mean_sig", "mean_bkg", "profile_sig", "profile_bkg", "hist_sig", "hist_bkg", "hist_actmax", "cond_actmax"],
parser.add_argument("-l", "--layer", type=int, help="Layer index (takes last layer by default)")
parser.add_argument("-n", "--neuron", type=int, default=0, help="Neuron index (takes first neuron by default)")
parser.add_argument("-a", "--all-neurons", action="store_true", help="Create a summary plot for all neurons in all hidden layers")
parser.add_argument("--log", action="store_true", help="Plot in color in log scale")
parser.add_argument("--contour", action="store_true", help="Interpolate with contours")
parser.add_argument("-b", "--nbins", default=20, type=int, help="Number of bins in x and y direction")
parser.add_argument("-x", "--xrange", type=float, nargs="+", help="xrange (low, high)")
parser.add_argument("-y", "--yrange", type=float, nargs="+", help="yrange (low, high)")
parser.add_argument("-p", "--profile-metric", help="metric for profile modes", default="average", choices=["mean", "average", "max"])
parser.add_argument("--ntries-cond-actmax", help="number of random events to be maximised and averaged per bin", default=20, type=int)
parser.add_argument("--nit-cond-actmax", help="number of iterations for maximisation per bin", default=1, type=int)
parser.add_argument("--ntries-actmax", help="number of random events to be maximised for hist_actmax", default=10000, type=int)
parser.add_argument("-t", "--threshold", help="minimum activation threshold", default=0.2, type=float)
parser.add_argument("-v", "--verbose", action="store_true")
parser.add_argument("-s", "--step-size", help="step size for activation maximisation", default=1., type=float)
if args.all_neurons and (not args.mode.startswith("mean")):
parser.error("--all-neurons currently only supported for mean_sig and mean_bkg")
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
plot_vs_activation = (args.vary == "activation")
layer = args.layer
neuron = args.neuron
if layer is None:
layer = c.layers
varx_index = c.fields.index(args.varx)
vary_index = c.fields.index(args.vary)
else:
vary_index = 0 # dummy value in this case
varx_label = args.varx
vary_label = args.vary
# percentilesx = np.percentile(c.x_test[:,varx_index], [1,99])
# percentilesy = np.percentile(c.x_test[:,vary_index], [1,99])
total_weights = c.w_test*np.array(c.class_weight)[c.y_test.astype(int)]
percentilesx = weighted_quantile(c.x_test[:,varx_index], [0.1, 0.99], sample_weight=total_weights)
percentilesy = weighted_quantile(c.x_test[:,vary_index], [0.1, 0.99], sample_weight=total_weights)
if args.xrange is not None:
if len(args.xrange) < 3:
args.xrange.append(args.nbins)
varx_range = args.xrange
else:
varx_range = (percentilesx[0], percentilesx[1], args.nbins)
if args.yrange is not None:
if len(args.yrange) < 3:
args.yrange.append(args.nbins)
vary_range = args.yrange
else:
vary_range = (percentilesy[0], percentilesy[1], args.nbins)
if plot_vs_activation:
vary_range = (0, 1, args.nbins)
if args.mode.startswith("mean"):
if args.mode == "mean_sig":
means = get_mean_event(c.x_test, c.y_test, 1)
elif args.mode == "mean_bkg":
means = get_mean_event(c.x_test, c.y_test, 0)
if hasattr(c, "get_input_list"):
input_transform = c.get_input_list
else:
input_transform = None
if not args.all_neurons:
plot_NN_vs_var_2D(
args.output_filename,
means=means,
varx_index=varx_index,
vary_index=vary_index,
scorefun=get_single_neuron_function(
c.model, layer, neuron,
scaler=c.scaler,
input_transform=input_transform
),
xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2],
ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2],
varx_label=varx_label, vary_label=vary_label,
logscale=args.log, only_pixels=(not args.contour)
)
else:
if hasattr(c, "get_input_list"):
transform_function = lambda inp : c.get_input_list(c.scaler.transform(inp))
else:
transform_function = c.scaler.transform(inp)
plot_NN_vs_var_2D_all(
args.output_filename,
means=means,
model=c.model,
transform_function=transform_function,
varx_index=varx_index,
vary_index=vary_index,
xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2],
ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2],
logz=args.log,
plot_last_layer=False,
)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
elif args.mode.startswith("profile"):
metric_dict = {
"mean" : np.mean,
"max" : np.max,
"average" : np.average,
}
if args.mode == "profile_sig":
class_index = 1
else:
class_index = 0
valsx = c.x_test[c.y_test==class_index][:,varx_index]
valsy = c.x_test[c.y_test==class_index][:,vary_index]
scores = c.scores_test[c.y_test==class_index].reshape(-1)
opt_kwargs = dict()
if args.profile_metric == "average":
opt_kwargs["weights"] = c.w_test[c.y_test==class_index]
plot_profile_2D(
args.output_filename,
valsx, valsy, scores,
xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2],
ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2],
metric=metric_dict[args.profile_metric],
varx_label=varx_label, vary_label=vary_label,
**opt_kwargs
)
elif args.mode.startswith("hist"):
if not args.mode == "hist_actmax":
if args.mode == "hist_sig":
class_index = 1
else:
class_index = 0
valsx = c.x_test[c.y_test==class_index][:,varx_index]
if not plot_vs_activation:
valsy = c.x_test[c.y_test==class_index][:,vary_index]
else:
valsy = c.scores_test[c.y_test==class_index].reshape(-1)
weights = c.w_test[c.y_test==class_index]
# ranges in which to sample the random events
x_test_scaled = c.scaler.transform(c.x_test)
ranges = [np.percentile(x_test_scaled[:,var_index], [1,99]) for var_index in range(len(c.fields))]
losses, events = get_max_activation_events(c.model, ranges, ntries=args.ntries_actmax, step=args.step_size, layer=layer, neuron=neuron, threshold=args.threshold)
events = c.scaler.inverse_transform(events)
valsx = events[:,varx_index]
if not plot_vs_activation:
valsy = events[:,vary_index]
else:
valsy = losses
weights = None
plot_hist_2D_events(
args.output_filename,
valsx, valsy,
xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2],
ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2],
weights=weights,
varx_label=varx_label, vary_label=vary_label,
elif args.mode.startswith("cond_actmax"):
x_test_scaled = c.scaler.transform(c.x_test)
# ranges in which to sample the random events
ranges = [np.percentile(x_test_scaled[:,var_index], [1,99]) for var_index in range(len(c.fields))]
plot_cond_avg_actmax_2D(
args.output_filename,
c.model, layer, neuron, ranges,
varx_index,
vary_index,
xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2],
ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2],
scaler=c.scaler,
ntries=args.ntries_cond_actmax,
maxit=args.nit_cond_actmax,
step=args.step_size,
varx_label=varx_label, vary_label=vary_label,
log=args.log,
)