#!/usr/bin/env python import sys import argparse import logging logging.basicConfig() import numpy as np import ROOT ROOT.gROOT.SetBatch() ROOT.PyConfig.IgnoreCommandLineOptions = True from KerasROOTClassification import load_from_dir from KerasROOTClassification.plotting import ( get_mean_event, plot_NN_vs_var_2D, plot_profile_2D, plot_hist_2D_events, plot_cond_avg_actmax_2D, plot_NN_vs_var_2D_all, ) from KerasROOTClassification.utils import get_single_neuron_function, get_max_activation_events, weighted_quantile parser = argparse.ArgumentParser(description='Create various 2D plots for a single neuron') parser.add_argument("project_dir") parser.add_argument("output_filename") parser.add_argument("varx") parser.add_argument("vary") parser.add_argument("-m", "--mode", choices=["mean_sig", "mean_bkg", "profile_sig", "profile_bkg", "hist_sig", "hist_bkg", "hist_actmax", "cond_actmax"], default="mean_sig") parser.add_argument("-l", "--layer", type=int, help="Layer index (takes last layer by default)") parser.add_argument("-n", "--neuron", type=int, default=0, help="Neuron index (takes first neuron by default)") parser.add_argument("-a", "--all-neurons", action="store_true", help="Create a summary plot for all neurons in all hidden layers") parser.add_argument("--log", action="store_true", help="Plot in color in log scale") parser.add_argument("--contour", action="store_true", help="Interpolate with contours") parser.add_argument("-b", "--nbins", default=20, type=int, help="Number of bins in x and y direction") parser.add_argument("-x", "--xrange", type=float, nargs="+", help="xrange (low, high)") parser.add_argument("-y", "--yrange", type=float, nargs="+", help="yrange (low, high)") parser.add_argument("-p", "--profile-metric", help="metric for profile modes", default="average", choices=["mean", "average", "max"]) parser.add_argument("--ntries-cond-actmax", help="number of random events to be maximised and averaged per bin", default=20, type=int) parser.add_argument("--nit-cond-actmax", help="number of iterations for maximisation per bin", default=1, type=int) parser.add_argument("--ntries-actmax", help="number of random events to be maximised for hist_actmax", default=10000, type=int) parser.add_argument("-t", "--threshold", help="minimum activation threshold", default=0.2, type=float) parser.add_argument("-v", "--verbose", action="store_true") parser.add_argument("-s", "--step-size", help="step size for activation maximisation", default=1., type=float) args = parser.parse_args() if args.all_neurons and (not args.mode.startswith("mean")): parser.error("--all-neurons currently only supported for mean_sig and mean_bkg") if args.verbose: logging.getLogger().setLevel(logging.DEBUG) c = load_from_dir(args.project_dir) plot_vs_activation = (args.vary == "activation") layer = args.layer neuron = args.neuron if layer is None: layer = c.layers varx_index = c.fields.index(args.varx) if not plot_vs_activation: vary_index = c.fields.index(args.vary) else: vary_index = 0 # dummy value in this case varx_label = args.varx vary_label = args.vary # percentilesx = np.percentile(c.x_test[:,varx_index], [1,99]) # percentilesy = np.percentile(c.x_test[:,vary_index], [1,99]) total_weights = c.w_test*np.array(c.class_weight)[c.y_test.astype(int)] percentilesx = weighted_quantile(c.x_test[:,varx_index], [0.1, 0.99], sample_weight=total_weights) percentilesy = weighted_quantile(c.x_test[:,vary_index], [0.1, 0.99], sample_weight=total_weights) if args.xrange is not None: if len(args.xrange) < 3: args.xrange.append(args.nbins) varx_range = args.xrange else: varx_range = (percentilesx[0], percentilesx[1], args.nbins) if args.yrange is not None: if len(args.yrange) < 3: args.yrange.append(args.nbins) vary_range = args.yrange else: vary_range = (percentilesy[0], percentilesy[1], args.nbins) if plot_vs_activation: vary_range = (0, 1, args.nbins) if args.mode.startswith("mean"): if args.mode == "mean_sig": means = get_mean_event(c.x_test, c.y_test, 1) elif args.mode == "mean_bkg": means = get_mean_event(c.x_test, c.y_test, 0) if hasattr(c, "get_input_list"): input_transform = c.get_input_list else: input_transform = None if not args.all_neurons: plot_NN_vs_var_2D( args.output_filename, means=means, varx_index=varx_index, vary_index=vary_index, scorefun=get_single_neuron_function( c.model, layer, neuron, scaler=c.scaler, input_transform=input_transform ), xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2], ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2], varx_label=varx_label, vary_label=vary_label, logscale=args.log, only_pixels=(not args.contour) ) else: if hasattr(c, "get_input_list"): transform_function = lambda inp : c.get_input_list(c.scaler.transform(inp)) else: transform_function = c.scaler.transform(inp) plot_NN_vs_var_2D_all( args.output_filename, means=means, model=c.model, transform_function=transform_function, varx_index=varx_index, vary_index=vary_index, xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2], ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2], logz=args.log, plot_last_layer=False, ) elif args.mode.startswith("profile"): metric_dict = { "mean" : np.mean, "max" : np.max, "average" : np.average, } if args.mode == "profile_sig": class_index = 1 else: class_index = 0 valsx = c.x_test[c.y_test==class_index][:,varx_index] valsy = c.x_test[c.y_test==class_index][:,vary_index] scores = c.scores_test[c.y_test==class_index].reshape(-1) opt_kwargs = dict() if args.profile_metric == "average": opt_kwargs["weights"] = c.w_test[c.y_test==class_index] plot_profile_2D( args.output_filename, valsx, valsy, scores, xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2], ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2], metric=metric_dict[args.profile_metric], varx_label=varx_label, vary_label=vary_label, log=args.log, **opt_kwargs ) elif args.mode.startswith("hist"): if not args.mode == "hist_actmax": if args.mode == "hist_sig": class_index = 1 else: class_index = 0 valsx = c.x_test[c.y_test==class_index][:,varx_index] if not plot_vs_activation: valsy = c.x_test[c.y_test==class_index][:,vary_index] else: valsy = c.scores_test[c.y_test==class_index].reshape(-1) weights = c.w_test[c.y_test==class_index] else: # ranges in which to sample the random events x_test_scaled = c.scaler.transform(c.x_test) ranges = [np.percentile(x_test_scaled[:,var_index], [1,99]) for var_index in range(len(c.fields))] losses, events = get_max_activation_events(c.model, ranges, ntries=args.ntries_actmax, step=args.step_size, layer=layer, neuron=neuron, threshold=args.threshold) events = c.scaler.inverse_transform(events) valsx = events[:,varx_index] if not plot_vs_activation: valsy = events[:,vary_index] else: valsy = losses weights = None plot_hist_2D_events( args.output_filename, valsx, valsy, xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2], ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2], weights=weights, varx_label=varx_label, vary_label=vary_label, log=args.log, ) elif args.mode.startswith("cond_actmax"): x_test_scaled = c.scaler.transform(c.x_test) # ranges in which to sample the random events ranges = [np.percentile(x_test_scaled[:,var_index], [1,99]) for var_index in range(len(c.fields))] plot_cond_avg_actmax_2D( args.output_filename, c.model, layer, neuron, ranges, varx_index, vary_index, xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2], ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2], scaler=c.scaler, ntries=args.ntries_cond_actmax, maxit=args.nit_cond_actmax, step=args.step_size, varx_label=varx_label, vary_label=vary_label, log=args.log, )