Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
660b4beb
Commit
660b4beb
authored
6 years ago
by
Thomas Weber
Browse files
Options
Downloads
Patches
Plain Diff
Added plotROC function and scaler function call
parent
34930398
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
toolkit.py
+42
-4
42 additions, 4 deletions
toolkit.py
with
42 additions
and
4 deletions
toolkit.py
+
42
−
4
View file @
660b4beb
...
...
@@ -13,11 +13,14 @@ import pandas as pd
import
h5py
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.externals
import
joblib
from
sklearn.metrics
import
roc_curve
from
keras.models
import
Sequential
from
keras.layers
import
Dense
from
keras.models
import
model_from_json
import
matplotlib.pyplot
as
plt
# configure number of cores
# this doesn't seem to work, but at least with these settings keras only uses 4 processes
import
tensorflow
as
tf
...
...
@@ -77,6 +80,9 @@ class KerasROOTClassification:
self
.
_class_weight
=
None
self
.
_model
=
None
self
.
score_train
=
None
self
.
score_test
=
None
# track the number of epochs this model has been trained
self
.
total_epochs
=
0
...
...
@@ -173,6 +179,8 @@ class KerasROOTClassification:
self
.
_scaler
=
StandardScaler
()
logger
.
info
(
"
Fitting StandardScaler to training data
"
)
self
.
_scaler
.
fit
(
self
.
x_train
)
logger
.
info
(
"
Fitting StandardScaler to test data
"
)
self
.
_scaler
.
fit
(
self
.
x_test
)
joblib
.
dump
(
self
.
_scaler
,
filename
)
return
self
.
_scaler
...
...
@@ -211,7 +219,8 @@ class KerasROOTClassification:
self
.
_model
.
add
(
Dense
(
self
.
nodes
,
activation
=
self
.
activation_function
))
# last layer is one neuron (binary classification)
self
.
_model
.
add
(
Dense
(
1
,
activation
=
'
sigmoid
'
))
logger
.
info
(
"
Compile model
"
)
self
.
_model
.
compile
(
optimizer
=
'
SGD
'
,
loss
=
'
binary_crossentropy
'
,
metrics
=
[
'
accuracy
'
])
...
...
@@ -234,6 +243,8 @@ class KerasROOTClassification:
if
not
self
.
data_loaded
:
self
.
_load_data
()
self
.
scaler
try
:
self
.
model
.
load_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
...
...
@@ -243,17 +254,25 @@ class KerasROOTClassification:
logger
.
info
(
"
No weights found, starting completely new training
"
)
self
.
total_epochs
=
self
.
_read_info
(
"
epochs
"
,
0
)
logger
.
info
(
"
Train model
"
)
self
.
model
.
fit
(
self
.
x_train
,
self
.
y_train
,
epochs
=
epochs
,
class_weight
=
self
.
class_weight
,
shuffle
=
True
,
batch_size
=
self
.
batch_size
)
logger
.
info
(
"
Save weights
"
)
self
.
model
.
save_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
self
.
total_epochs
+=
epochs
self
.
_write_info
(
"
epochs
"
,
self
.
total_epochs
)
logger
.
info
(
"
Create scores for ROC curve
"
)
self
.
scores_test
=
self
.
model
.
predict
(
self
.
x_test
)
self
.
scores_train
=
self
.
model
.
predict
(
self
.
x_train
)
def
evaluate
(
self
):
pass
...
...
@@ -262,7 +281,25 @@ class KerasROOTClassification:
pass
def
plotROC
(
self
):
pass
logger
.
info
(
"
Plot ROC curve
"
)
fpr
,
tpr
,
threshold
=
roc_curve
(
self
.
y_test
,
self
.
scores_test
,
sample_weight
=
self
.
w_test
)
plt
.
grid
(
color
=
'
gray
'
,
linestyle
=
'
--
'
,
linewidth
=
1
)
plt
.
plot
(
fpr
,
tpr
,
label
=
'
NN
'
)
plt
.
plot
([
0
,
1
],[
0
,
1
],
linestyle
=
'
--
'
,
color
=
'
black
'
,
label
=
'
Luck
'
)
plt
.
xlabel
(
"
False positive rate (background rejection)
"
)
plt
.
ylabel
(
"
True positive rate (signal efficiency)
"
)
plt
.
title
(
'
Receiver operating characteristic
'
)
plt
.
xlim
(
0
,
1
)
plt
.
ylim
(
0
,
1
)
plt
.
xticks
(
np
.
arange
(
0
,
1
,
0.1
))
plt
.
yticks
(
np
.
arange
(
0
,
1
,
0.1
))
plt
.
legend
(
loc
=
'
lower left
'
,
framealpha
=
1.0
)
plt
.
savefig
(
os
.
path
.
join
(
self
.
project_dir
,
"
ROC.pdf
"
))
plt
.
clf
()
def
plotScore
(
self
):
pass
...
...
@@ -286,3 +323,4 @@ if __name__ == "__main__":
identifiers
=
[
"
DatasetNumber
"
,
"
EventNumber
"
])
c
.
train
(
epochs
=
1
)
c
.
plotROC
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment