Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
34930398
Commit
34930398
authored
6 years ago
by
Nikolai.Hartmann
Browse files
Options
Downloads
Patches
Plain Diff
Keras MLP model and its training
parent
64b90646
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
toolkit.py
+106
-13
106 additions, 13 deletions
toolkit.py
with
106 additions
and
13 deletions
toolkit.py
+
106
−
13
View file @
34930398
#!/usr/bin/env python
#!/usr/bin/env python
import
os
import
os
import
json
import
logging
import
logging
logger
=
logging
.
getLogger
(
"
KerasROOTClassification
"
)
logger
=
logging
.
getLogger
(
"
KerasROOTClassification
"
)
...
@@ -13,6 +14,22 @@ import h5py
...
@@ -13,6 +14,22 @@ import h5py
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.externals
import
joblib
from
sklearn.externals
import
joblib
from
keras.models
import
Sequential
from
keras.layers
import
Dense
from
keras.models
import
model_from_json
# configure number of cores
# this doesn't seem to work, but at least with these settings keras only uses 4 processes
import
tensorflow
as
tf
from
keras
import
backend
as
K
num_cores
=
1
config
=
tf
.
ConfigProto
(
intra_op_parallelism_threads
=
num_cores
,
inter_op_parallelism_threads
=
num_cores
,
allow_soft_placement
=
True
,
device_count
=
{
'
CPU
'
:
num_cores
})
session
=
tf
.
Session
(
config
=
config
)
K
.
set_session
(
session
)
import
ROOT
import
ROOT
class
KerasROOTClassification
:
class
KerasROOTClassification
:
...
@@ -23,7 +40,7 @@ class KerasROOTClassification:
...
@@ -23,7 +40,7 @@ class KerasROOTClassification:
def
__init__
(
self
,
name
,
def
__init__
(
self
,
name
,
signal_trees
,
bkg_trees
,
branches
,
weight_expr
,
identifiers
,
signal_trees
,
bkg_trees
,
branches
,
weight_expr
,
identifiers
,
layers
=
3
,
nodes
=
64
,
out_dir
=
"
./outputs
"
):
layers
=
3
,
nodes
=
64
,
batch_size
=
128
,
activation_function
=
'
relu
'
,
out_dir
=
"
./outputs
"
):
self
.
name
=
name
self
.
name
=
name
self
.
signal_trees
=
signal_trees
self
.
signal_trees
=
signal_trees
self
.
bkg_trees
=
bkg_trees
self
.
bkg_trees
=
bkg_trees
...
@@ -32,6 +49,8 @@ class KerasROOTClassification:
...
@@ -32,6 +49,8 @@ class KerasROOTClassification:
self
.
identifiers
=
identifiers
self
.
identifiers
=
identifiers
self
.
layers
=
layers
self
.
layers
=
layers
self
.
nodes
=
nodes
self
.
nodes
=
nodes
self
.
batch_size
=
batch_size
self
.
activation_function
=
activation_function
self
.
out_dir
=
out_dir
self
.
out_dir
=
out_dir
self
.
project_dir
=
os
.
path
.
join
(
self
.
out_dir
,
name
)
self
.
project_dir
=
os
.
path
.
join
(
self
.
out_dir
,
name
)
...
@@ -55,9 +74,16 @@ class KerasROOTClassification:
...
@@ -55,9 +74,16 @@ class KerasROOTClassification:
self
.
b_eventlist_train
=
None
self
.
b_eventlist_train
=
None
self
.
_scaler
=
None
self
.
_scaler
=
None
self
.
_class_weight
=
None
self
.
_model
=
None
# track the number of epochs this model has been trained
self
.
total_epochs
=
0
self
.
data_loaded
=
False
def
load_data
(
self
):
def
_load_data
(
self
):
try
:
try
:
...
@@ -108,6 +134,8 @@ class KerasROOTClassification:
...
@@ -108,6 +134,8 @@ class KerasROOTClassification:
logger
.
info
(
"
Writing to hdf5
"
)
logger
.
info
(
"
Writing to hdf5
"
)
self
.
_dump_to_hdf5
()
self
.
_dump_to_hdf5
()
self
.
data_loaded
=
True
def
_dump_training_list
(
self
):
def
_dump_training_list
(
self
):
s_eventlist
=
pd
.
DataFrame
(
self
.
s_train
[
self
.
identifiers
])
s_eventlist
=
pd
.
DataFrame
(
self
.
s_train
[
self
.
identifiers
])
...
@@ -149,14 +177,83 @@ class KerasROOTClassification:
...
@@ -149,14 +177,83 @@ class KerasROOTClassification:
return
self
.
_scaler
return
self
.
_scaler
def
_transform_data
(
self
):
def
_read_info
(
self
,
key
,
default
):
pass
filename
=
os
.
path
.
join
(
self
.
project_dir
,
"
info.json
"
)
if
not
os
.
path
.
exists
(
filename
):
with
open
(
filename
,
"
w
"
)
as
of
:
json
.
dump
({},
of
)
with
open
(
filename
)
as
f
:
info
=
json
.
load
(
f
)
return
info
.
get
(
key
,
default
)
def
_create_model
(
self
):
pass
def
train
(
self
):
def
_write_info
(
self
,
key
,
value
):
pass
filename
=
os
.
path
.
join
(
self
.
project_dir
,
"
info.json
"
)
with
open
(
filename
)
as
f
:
info
=
json
.
load
(
f
)
info
[
key
]
=
value
with
open
(
filename
,
"
w
"
)
as
of
:
json
.
dump
(
info
,
of
)
@property
def
model
(
self
):
"
Simple MLP
"
if
self
.
_model
is
None
:
self
.
_model
=
Sequential
()
# first hidden layer
self
.
_model
.
add
(
Dense
(
self
.
nodes
,
input_dim
=
len
(
self
.
branches
),
activation
=
self
.
activation_function
))
# the other hidden layers
for
layer_number
in
range
(
self
.
layers
-
1
):
self
.
_model
.
add
(
Dense
(
self
.
nodes
,
activation
=
self
.
activation_function
))
# last layer is one neuron (binary classification)
self
.
_model
.
add
(
Dense
(
1
,
activation
=
'
sigmoid
'
))
self
.
_model
.
compile
(
optimizer
=
'
SGD
'
,
loss
=
'
binary_crossentropy
'
,
metrics
=
[
'
accuracy
'
])
# dump to json for documentation
with
open
(
os
.
path
.
join
(
self
.
project_dir
,
"
model.json
"
),
"
w
"
)
as
of
:
of
.
write
(
self
.
_model
.
to_json
())
return
self
.
_model
@property
def
class_weight
(
self
):
if
self
.
_class_weight
is
None
:
sumw_bkg
=
np
.
sum
(
self
.
w_train
[
self
.
y_train
==
0
])
sumw_sig
=
np
.
sum
(
self
.
w_train
[
self
.
y_train
==
1
])
self
.
_class_weight
=
[(
sumw_sig
+
sumw_bkg
)
/
(
2
*
sumw_bkg
),
(
sumw_sig
+
sumw_bkg
)
/
(
2
*
sumw_sig
)]
return
self
.
_class_weight
def
train
(
self
,
epochs
=
10
):
if
not
self
.
data_loaded
:
self
.
_load_data
()
try
:
self
.
model
.
load_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
logger
.
info
(
"
Weights found and loaded
"
)
logger
.
info
(
"
Continue training
"
)
except
IOError
:
logger
.
info
(
"
No weights found, starting completely new training
"
)
self
.
total_epochs
=
self
.
_read_info
(
"
epochs
"
,
0
)
self
.
model
.
fit
(
self
.
x_train
,
self
.
y_train
,
epochs
=
epochs
,
class_weight
=
self
.
class_weight
,
shuffle
=
True
,
batch_size
=
self
.
batch_size
)
self
.
model
.
save_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
self
.
total_epochs
+=
epochs
self
.
_write_info
(
"
epochs
"
,
self
.
total_epochs
)
def
evaluate
(
self
):
def
evaluate
(
self
):
pass
pass
...
@@ -188,8 +285,4 @@ if __name__ == "__main__":
...
@@ -188,8 +285,4 @@ if __name__ == "__main__":
weight_expr
=
"
eventWeight*genWeight
"
,
weight_expr
=
"
eventWeight*genWeight
"
,
identifiers
=
[
"
DatasetNumber
"
,
"
EventNumber
"
])
identifiers
=
[
"
DatasetNumber
"
,
"
EventNumber
"
])
c
.
load_data
()
c
.
train
(
epochs
=
1
)
print
(
c
.
x_train
)
print
(
len
(
c
.
x_train
))
print
(
c
.
scaler
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment