Skip to content
Snippets Groups Projects
Commit 365ba76d authored by Nikolai.Hartmann's avatar Nikolai.Hartmann
Browse files

Selection argument, RobustScaler and workaround for numpy bug

parent ce8f5544
No related branches found
No related tags found
No related merge requests found
...@@ -11,7 +11,7 @@ from root_numpy import tree2array, rec2array ...@@ -11,7 +11,7 @@ from root_numpy import tree2array, rec2array
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import h5py import h5py
from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler, RobustScaler
from sklearn.externals import joblib from sklearn.externals import joblib
from sklearn.metrics import roc_curve from sklearn.metrics import roc_curve
...@@ -44,12 +44,20 @@ class KerasROOTClassification: ...@@ -44,12 +44,20 @@ class KerasROOTClassification:
def __init__(self, name, def __init__(self, name,
signal_trees, bkg_trees, branches, weight_expr, identifiers, signal_trees, bkg_trees, branches, weight_expr, identifiers,
layers=3, nodes=64, batch_size=128, validation_split=0.33, activation_function='relu', out_dir="./outputs"): selection=None,
layers=3,
nodes=64,
batch_size=128,
validation_split=0.33,
activation_function='relu',
out_dir="./outputs",
scaler_type="RobustScaler"):
self.name = name self.name = name
self.signal_trees = signal_trees self.signal_trees = signal_trees
self.bkg_trees = bkg_trees self.bkg_trees = bkg_trees
self.branches = branches self.branches = branches
self.weight_expr = weight_expr self.weight_expr = weight_expr
self.selection = selection
self.identifiers = identifiers self.identifiers = identifiers
self.layers = layers self.layers = layers
self.nodes = nodes self.nodes = nodes
...@@ -57,6 +65,7 @@ class KerasROOTClassification: ...@@ -57,6 +65,7 @@ class KerasROOTClassification:
self.validation_split = validation_split self.validation_split = validation_split
self.activation_function = activation_function self.activation_function = activation_function
self.out_dir = out_dir self.out_dir = out_dir
self.scaler_type = scaler_type
self.project_dir = os.path.join(self.out_dir, name) self.project_dir = os.path.join(self.out_dir, name)
...@@ -112,10 +121,22 @@ class KerasROOTClassification: ...@@ -112,10 +121,22 @@ class KerasROOTClassification:
signal_chain.AddFile(filename, -1, treename) signal_chain.AddFile(filename, -1, treename)
for filename, treename in self.bkg_trees: for filename, treename in self.bkg_trees:
bkg_chain.AddFile(filename, -1, treename) bkg_chain.AddFile(filename, -1, treename)
self.s_train = tree2array(signal_chain, branches=self.branches+[self.weight_expr]+self.identifiers, start=0, step=2) self.s_train = tree2array(signal_chain,
self.b_train = tree2array(bkg_chain, branches=self.branches+[self.weight_expr]+self.identifiers, start=0, step=2) branches=self.branches+[self.weight_expr]+self.identifiers,
self.s_test = tree2array(signal_chain, branches=self.branches+[self.weight_expr], start=1, step=2) selection=self.selection,
self.b_test = tree2array(bkg_chain, branches=self.branches+[self.weight_expr], start=1, step=2) start=0, step=2)
self.b_train = tree2array(bkg_chain,
branches=self.branches+[self.weight_expr]+self.identifiers,
selection=self.selection,
start=0, step=2)
self.s_test = tree2array(signal_chain,
branches=self.branches+[self.weight_expr],
selection=self.selection,
start=1, step=2)
self.b_test = tree2array(bkg_chain,
branches=self.branches+[self.weight_expr],
selection=self.selection,
start=1, step=2)
self._dump_training_list() self._dump_training_list()
self.s_eventlist_train = self.s_train[self.identifiers] self.s_eventlist_train = self.s_train[self.identifiers]
...@@ -179,11 +200,16 @@ class KerasROOTClassification: ...@@ -179,11 +200,16 @@ class KerasROOTClassification:
filename = os.path.join(self.project_dir, "scaler.pkl") filename = os.path.join(self.project_dir, "scaler.pkl")
try: try:
self._scaler = joblib.load(filename) self._scaler = joblib.load(filename)
logger.info("Loaded existing StandardScaler from {}".format(filename)) logger.info("Loaded existing scaler from {}".format(filename))
except IOError: except IOError:
logger.info("Creating new StandardScaler") logger.info("Creating new {}".format(self.scaler_type))
self._scaler = StandardScaler() if self.scaler_type == "StandardScaler":
logger.info("Fitting StandardScaler to training data") self._scaler = StandardScaler()
elif self.scaler_type == "RobustScaler":
self._scaler = RobustScaler()
else:
raise ValueError("Scaler type {} unknown".format(self.scaler_type))
logger.info("Fitting {} to training data".format(self.scaler_type))
self._scaler.fit(self.x_train) self._scaler.fit(self.x_train)
# i think this would refit to test data (and overwrite the parameters) # i think this would refit to test data (and overwrite the parameters)
# probably we either want to fit only training data or training and test data together # probably we either want to fit only training data or training and test data together
...@@ -239,7 +265,7 @@ class KerasROOTClassification: ...@@ -239,7 +265,7 @@ class KerasROOTClassification:
self._model.add(Dense(self.nodes, activation=self.activation_function)) self._model.add(Dense(self.nodes, activation=self.activation_function))
# last layer is one neuron (binary classification) # last layer is one neuron (binary classification)
self._model.add(Dense(1, activation='sigmoid')) self._model.add(Dense(1, activation='sigmoid'))
logger.info("Compile model") logger.info("Compile model")
self._model.compile(optimizer='SGD', self._model.compile(optimizer='SGD',
loss='binary_crossentropy', loss='binary_crossentropy',
...@@ -321,6 +347,7 @@ class KerasROOTClassification: ...@@ -321,6 +347,7 @@ class KerasROOTClassification:
self._bkg_weights = np.empty(sum(self.y_train == 0)) self._bkg_weights = np.empty(sum(self.y_train == 0))
self._bkg_weights.fill(self.class_weight[0]) self._bkg_weights.fill(self.class_weight[0])
self._bkg_weights *= self.w_train[self.y_train == 0] self._bkg_weights *= self.w_train[self.y_train == 0]
logger.debug("Background weights: {}".format(self._bkg_weights))
return self._bkg_weights return self._bkg_weights
...@@ -335,6 +362,7 @@ class KerasROOTClassification: ...@@ -335,6 +362,7 @@ class KerasROOTClassification:
self._sig_weights = np.empty(sum(self.y_train == 1)) self._sig_weights = np.empty(sum(self.y_train == 1))
self._sig_weights.fill(self.class_weight[1]) self._sig_weights.fill(self.class_weight[1])
self._sig_weights *= self.w_train[self.y_train == 1] self._sig_weights *= self.w_train[self.y_train == 1]
logger.debug("Signal weights: {}".format(self._sig_weights))
return self._sig_weights return self._sig_weights
...@@ -344,10 +372,27 @@ class KerasROOTClassification: ...@@ -344,10 +372,27 @@ class KerasROOTClassification:
fig, ax = plt.subplots() fig, ax = plt.subplots()
bkg = self.x_train[:,var_index][self.y_train == 0] bkg = self.x_train[:,var_index][self.y_train == 0]
sig = self.x_train[:,var_index][self.y_train == 1] sig = self.x_train[:,var_index][self.y_train == 1]
logger.debug("Plotting bkg (min={}, max={}) from {}".format(np.min(bkg), np.max(bkg), bkg)) logger.debug("Plotting bkg (min={}, max={}) from {}".format(np.min(bkg), np.max(bkg), bkg))
logger.debug("Plotting sig (min={}, max={}) from {}".format(np.min(sig), np.max(sig), sig)) logger.debug("Plotting sig (min={}, max={}) from {}".format(np.min(sig), np.max(sig), sig))
ax.hist(bkg, color="b", alpha=0.5, bins=50, weights=self.bkg_weights)
ax.hist(sig, color="r", alpha=0.5, bins=50, weights=self.sig_weights) # calculate percentiles to get a heuristic for the range to be plotted
# (should in principle also be done with weights, but for now do it unweighted)
range_sig = np.percentile(sig, [1, 99])
range_bkg = np.percentile(sig, [1, 99])
plot_range = (min(range_sig[0], range_bkg[0]), max(range_sig[1], range_sig[1]))
logger.debug("Calculated range based on percentiles: {}".format(plot_range))
try:
ax.hist(bkg, color="b", alpha=0.5, bins=50, range=plot_range, weights=self.bkg_weights)
ax.hist(sig, color="r", alpha=0.5, bins=50, range=plot_range, weights=self.sig_weights)
except ValueError:
# weird, probably not always working workaround for a numpy bug
plot_range = (float("{:.2f}".format(plot_range[0])), float("{:.2f}".format(plot_range[1])))
logger.warn("Got a value error during plotting, maybe this is due to a numpy bug - changing range to {}".format(plot_range))
ax.hist(bkg, color="b", alpha=0.5, bins=50, range=plot_range, weights=self.bkg_weights)
ax.hist(sig, color="r", alpha=0.5, bins=50, range=plot_range, weights=self.sig_weights)
ax.set_xlabel(branch+" (transformed)") ax.set_xlabel(branch+" (transformed)")
plot_dir = os.path.join(self.project_dir, "plots") plot_dir = os.path.join(self.project_dir, "plots")
if not os.path.exists(plot_dir): if not os.path.exists(plot_dir):
...@@ -411,11 +456,12 @@ if __name__ == "__main__": ...@@ -411,11 +456,12 @@ if __name__ == "__main__":
filename = "/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root" filename = "/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root"
c = KerasROOTClassification("test", c = KerasROOTClassification("test2",
signal_trees = [(filename, "GG_oneStep_1705_1105_505_NoSys")], signal_trees = [(filename, "GG_oneStep_1705_1105_505_NoSys")],
bkg_trees = [(filename, "ttbar_NoSys"), bkg_trees = [(filename, "ttbar_NoSys"),
(filename, "wjets_Sherpa221_NoSys") (filename, "wjets_Sherpa221_NoSys")
], ],
selection="lep1Pt<5000", # cut out a few very weird outliers
branches = ["met", "mt"], branches = ["met", "mt"],
weight_expr = "eventWeight*genWeight", weight_expr = "eventWeight*genWeight",
identifiers = ["DatasetNumber", "EventNumber"]) identifiers = ["DatasetNumber", "EventNumber"])
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment