Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
365ba76d
Commit
365ba76d
authored
6 years ago
by
Nikolai.Hartmann
Browse files
Options
Downloads
Patches
Plain Diff
Selection argument, RobustScaler and workaround for numpy bug
parent
ce8f5544
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
toolkit.py
+60
-14
60 additions, 14 deletions
toolkit.py
with
60 additions
and
14 deletions
toolkit.py
+
60
−
14
View file @
365ba76d
...
...
@@ -11,7 +11,7 @@ from root_numpy import tree2array, rec2array
import
numpy
as
np
import
pandas
as
pd
import
h5py
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.preprocessing
import
StandardScaler
,
RobustScaler
from
sklearn.externals
import
joblib
from
sklearn.metrics
import
roc_curve
...
...
@@ -44,12 +44,20 @@ class KerasROOTClassification:
def
__init__
(
self
,
name
,
signal_trees
,
bkg_trees
,
branches
,
weight_expr
,
identifiers
,
layers
=
3
,
nodes
=
64
,
batch_size
=
128
,
validation_split
=
0.33
,
activation_function
=
'
relu
'
,
out_dir
=
"
./outputs
"
):
selection
=
None
,
layers
=
3
,
nodes
=
64
,
batch_size
=
128
,
validation_split
=
0.33
,
activation_function
=
'
relu
'
,
out_dir
=
"
./outputs
"
,
scaler_type
=
"
RobustScaler
"
):
self
.
name
=
name
self
.
signal_trees
=
signal_trees
self
.
bkg_trees
=
bkg_trees
self
.
branches
=
branches
self
.
weight_expr
=
weight_expr
self
.
selection
=
selection
self
.
identifiers
=
identifiers
self
.
layers
=
layers
self
.
nodes
=
nodes
...
...
@@ -57,6 +65,7 @@ class KerasROOTClassification:
self
.
validation_split
=
validation_split
self
.
activation_function
=
activation_function
self
.
out_dir
=
out_dir
self
.
scaler_type
=
scaler_type
self
.
project_dir
=
os
.
path
.
join
(
self
.
out_dir
,
name
)
...
...
@@ -112,10 +121,22 @@ class KerasROOTClassification:
signal_chain
.
AddFile
(
filename
,
-
1
,
treename
)
for
filename
,
treename
in
self
.
bkg_trees
:
bkg_chain
.
AddFile
(
filename
,
-
1
,
treename
)
self
.
s_train
=
tree2array
(
signal_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
]
+
self
.
identifiers
,
start
=
0
,
step
=
2
)
self
.
b_train
=
tree2array
(
bkg_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
]
+
self
.
identifiers
,
start
=
0
,
step
=
2
)
self
.
s_test
=
tree2array
(
signal_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
],
start
=
1
,
step
=
2
)
self
.
b_test
=
tree2array
(
bkg_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
],
start
=
1
,
step
=
2
)
self
.
s_train
=
tree2array
(
signal_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
]
+
self
.
identifiers
,
selection
=
self
.
selection
,
start
=
0
,
step
=
2
)
self
.
b_train
=
tree2array
(
bkg_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
]
+
self
.
identifiers
,
selection
=
self
.
selection
,
start
=
0
,
step
=
2
)
self
.
s_test
=
tree2array
(
signal_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
],
selection
=
self
.
selection
,
start
=
1
,
step
=
2
)
self
.
b_test
=
tree2array
(
bkg_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
],
selection
=
self
.
selection
,
start
=
1
,
step
=
2
)
self
.
_dump_training_list
()
self
.
s_eventlist_train
=
self
.
s_train
[
self
.
identifiers
]
...
...
@@ -179,11 +200,16 @@ class KerasROOTClassification:
filename
=
os
.
path
.
join
(
self
.
project_dir
,
"
scaler.pkl
"
)
try
:
self
.
_scaler
=
joblib
.
load
(
filename
)
logger
.
info
(
"
Loaded existing
StandardS
caler from {}
"
.
format
(
filename
))
logger
.
info
(
"
Loaded existing
s
caler from {}
"
.
format
(
filename
))
except
IOError
:
logger
.
info
(
"
Creating new StandardScaler
"
)
self
.
_scaler
=
StandardScaler
()
logger
.
info
(
"
Fitting StandardScaler to training data
"
)
logger
.
info
(
"
Creating new {}
"
.
format
(
self
.
scaler_type
))
if
self
.
scaler_type
==
"
StandardScaler
"
:
self
.
_scaler
=
StandardScaler
()
elif
self
.
scaler_type
==
"
RobustScaler
"
:
self
.
_scaler
=
RobustScaler
()
else
:
raise
ValueError
(
"
Scaler type {} unknown
"
.
format
(
self
.
scaler_type
))
logger
.
info
(
"
Fitting {} to training data
"
.
format
(
self
.
scaler_type
))
self
.
_scaler
.
fit
(
self
.
x_train
)
# i think this would refit to test data (and overwrite the parameters)
# probably we either want to fit only training data or training and test data together
...
...
@@ -239,7 +265,7 @@ class KerasROOTClassification:
self
.
_model
.
add
(
Dense
(
self
.
nodes
,
activation
=
self
.
activation_function
))
# last layer is one neuron (binary classification)
self
.
_model
.
add
(
Dense
(
1
,
activation
=
'
sigmoid
'
))
logger
.
info
(
"
Compile model
"
)
self
.
_model
.
compile
(
optimizer
=
'
SGD
'
,
loss
=
'
binary_crossentropy
'
,
...
...
@@ -321,6 +347,7 @@ class KerasROOTClassification:
self
.
_bkg_weights
=
np
.
empty
(
sum
(
self
.
y_train
==
0
))
self
.
_bkg_weights
.
fill
(
self
.
class_weight
[
0
])
self
.
_bkg_weights
*=
self
.
w_train
[
self
.
y_train
==
0
]
logger
.
debug
(
"
Background weights: {}
"
.
format
(
self
.
_bkg_weights
))
return
self
.
_bkg_weights
...
...
@@ -335,6 +362,7 @@ class KerasROOTClassification:
self
.
_sig_weights
=
np
.
empty
(
sum
(
self
.
y_train
==
1
))
self
.
_sig_weights
.
fill
(
self
.
class_weight
[
1
])
self
.
_sig_weights
*=
self
.
w_train
[
self
.
y_train
==
1
]
logger
.
debug
(
"
Signal weights: {}
"
.
format
(
self
.
_sig_weights
))
return
self
.
_sig_weights
...
...
@@ -344,10 +372,27 @@ class KerasROOTClassification:
fig
,
ax
=
plt
.
subplots
()
bkg
=
self
.
x_train
[:,
var_index
][
self
.
y_train
==
0
]
sig
=
self
.
x_train
[:,
var_index
][
self
.
y_train
==
1
]
logger
.
debug
(
"
Plotting bkg (min={}, max={}) from {}
"
.
format
(
np
.
min
(
bkg
),
np
.
max
(
bkg
),
bkg
))
logger
.
debug
(
"
Plotting sig (min={}, max={}) from {}
"
.
format
(
np
.
min
(
sig
),
np
.
max
(
sig
),
sig
))
ax
.
hist
(
bkg
,
color
=
"
b
"
,
alpha
=
0.5
,
bins
=
50
,
weights
=
self
.
bkg_weights
)
ax
.
hist
(
sig
,
color
=
"
r
"
,
alpha
=
0.5
,
bins
=
50
,
weights
=
self
.
sig_weights
)
# calculate percentiles to get a heuristic for the range to be plotted
# (should in principle also be done with weights, but for now do it unweighted)
range_sig
=
np
.
percentile
(
sig
,
[
1
,
99
])
range_bkg
=
np
.
percentile
(
sig
,
[
1
,
99
])
plot_range
=
(
min
(
range_sig
[
0
],
range_bkg
[
0
]),
max
(
range_sig
[
1
],
range_sig
[
1
]))
logger
.
debug
(
"
Calculated range based on percentiles: {}
"
.
format
(
plot_range
))
try
:
ax
.
hist
(
bkg
,
color
=
"
b
"
,
alpha
=
0.5
,
bins
=
50
,
range
=
plot_range
,
weights
=
self
.
bkg_weights
)
ax
.
hist
(
sig
,
color
=
"
r
"
,
alpha
=
0.5
,
bins
=
50
,
range
=
plot_range
,
weights
=
self
.
sig_weights
)
except
ValueError
:
# weird, probably not always working workaround for a numpy bug
plot_range
=
(
float
(
"
{:.2f}
"
.
format
(
plot_range
[
0
])),
float
(
"
{:.2f}
"
.
format
(
plot_range
[
1
])))
logger
.
warn
(
"
Got a value error during plotting, maybe this is due to a numpy bug - changing range to {}
"
.
format
(
plot_range
))
ax
.
hist
(
bkg
,
color
=
"
b
"
,
alpha
=
0.5
,
bins
=
50
,
range
=
plot_range
,
weights
=
self
.
bkg_weights
)
ax
.
hist
(
sig
,
color
=
"
r
"
,
alpha
=
0.5
,
bins
=
50
,
range
=
plot_range
,
weights
=
self
.
sig_weights
)
ax
.
set_xlabel
(
branch
+
"
(transformed)
"
)
plot_dir
=
os
.
path
.
join
(
self
.
project_dir
,
"
plots
"
)
if
not
os
.
path
.
exists
(
plot_dir
):
...
...
@@ -411,11 +456,12 @@ if __name__ == "__main__":
filename
=
"
/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root
"
c
=
KerasROOTClassification
(
"
test
"
,
c
=
KerasROOTClassification
(
"
test
2
"
,
signal_trees
=
[(
filename
,
"
GG_oneStep_1705_1105_505_NoSys
"
)],
bkg_trees
=
[(
filename
,
"
ttbar_NoSys
"
),
(
filename
,
"
wjets_Sherpa221_NoSys
"
)
],
selection
=
"
lep1Pt<5000
"
,
# cut out a few very weird outliers
branches
=
[
"
met
"
,
"
mt
"
],
weight_expr
=
"
eventWeight*genWeight
"
,
identifiers
=
[
"
DatasetNumber
"
,
"
EventNumber
"
])
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment