Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
35d84c65
Commit
35d84c65
authored
6 years ago
by
Nikolai
Browse files
Options
Downloads
Patches
Plain Diff
Transform and plot data before training
parent
34930398
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
toolkit.py
+75
-3
75 additions, 3 deletions
toolkit.py
with
75 additions
and
3 deletions
toolkit.py
+
75
−
3
View file @
35d84c65
...
...
@@ -13,10 +13,10 @@ import pandas as pd
import
h5py
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.externals
import
joblib
from
keras.models
import
Sequential
from
keras.layers
import
Dense
from
keras.models
import
model_from_json
import
matplotlib.pyplot
as
plt
# configure number of cores
# this doesn't seem to work, but at least with these settings keras only uses 4 processes
...
...
@@ -75,12 +75,15 @@ class KerasROOTClassification:
self
.
_scaler
=
None
self
.
_class_weight
=
None
self
.
_bkg_weights
=
None
self
.
_sig_weights
=
None
self
.
_model
=
None
# track the number of epochs this model has been trained
self
.
total_epochs
=
0
self
.
data_loaded
=
False
self
.
data_transformed
=
False
def
_load_data
(
self
):
...
...
@@ -177,6 +180,18 @@ class KerasROOTClassification:
return
self
.
_scaler
def
_transform_data
(
self
):
if
not
self
.
data_transformed
:
# todo: what to do about the outliers? Where do they come from?
logger
.
debug
(
"
training data before transformation: {}
"
.
format
(
self
.
x_train
))
logger
.
debug
(
"
minimum values: {}
"
.
format
([
np
.
min
(
self
.
x_train
[:,
i
])
for
i
in
range
(
self
.
x_train
.
shape
[
1
])]))
logger
.
debug
(
"
maximum values: {}
"
.
format
([
np
.
max
(
self
.
x_train
[:,
i
])
for
i
in
range
(
self
.
x_train
.
shape
[
1
])]))
self
.
x_train
=
self
.
scaler
.
transform
(
self
.
x_train
)
logger
.
debug
(
"
training data after transformation: {}
"
.
format
(
self
.
x_train
))
self
.
x_test
=
self
.
scaler
.
transform
(
self
.
x_test
)
self
.
data_transformed
=
True
def
_read_info
(
self
,
key
,
default
):
filename
=
os
.
path
.
join
(
self
.
project_dir
,
"
info.json
"
)
if
not
os
.
path
.
exists
(
filename
):
...
...
@@ -222,6 +237,7 @@ class KerasROOTClassification:
return
self
.
_model
@property
def
class_weight
(
self
):
if
self
.
_class_weight
is
None
:
...
...
@@ -230,11 +246,18 @@ class KerasROOTClassification:
self
.
_class_weight
=
[(
sumw_sig
+
sumw_bkg
)
/
(
2
*
sumw_bkg
),
(
sumw_sig
+
sumw_bkg
)
/
(
2
*
sumw_sig
)]
return
self
.
_class_weight
def
train
(
self
,
epochs
=
10
):
if
not
self
.
data_loaded
:
self
.
_load_data
()
if
not
self
.
data_transformed
:
self
.
_transform_data
()
for
branch_index
,
branch
in
enumerate
(
self
.
branches
):
self
.
plot_input
(
branch_index
)
try
:
self
.
model
.
load_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
logger
.
info
(
"
Weights found and loaded
"
)
...
...
@@ -244,7 +267,9 @@ class KerasROOTClassification:
self
.
total_epochs
=
self
.
_read_info
(
"
epochs
"
,
0
)
self
.
model
.
fit
(
self
.
x_train
,
self
.
y_train
,
self
.
model
.
fit
(
self
.
x_train
,
# the reshape might be unnescessary here
self
.
y_train
.
reshape
(
-
1
,
1
),
epochs
=
epochs
,
class_weight
=
self
.
class_weight
,
shuffle
=
True
,
...
...
@@ -261,6 +286,52 @@ class KerasROOTClassification:
def
writeFriendTree
(
self
):
pass
@property
def
bkg_weights
(
self
):
"""
class weights multiplied by event weights (for plotting)
TODO: find a better way to do this
"""
if
self
.
_bkg_weights
is
None
:
logger
.
debug
(
"
Calculating background weights for plotting
"
)
self
.
_bkg_weights
=
np
.
empty
(
sum
(
self
.
y_train
==
0
))
self
.
_bkg_weights
.
fill
(
self
.
class_weight
[
0
])
self
.
_bkg_weights
*=
self
.
w_train
[
self
.
y_train
==
0
]
return
self
.
_bkg_weights
@property
def
sig_weights
(
self
):
"""
class weights multiplied by event weights (for plotting)
TODO: find a better way to do this
"""
if
self
.
_sig_weights
is
None
:
logger
.
debug
(
"
Calculating signal weights for plotting
"
)
self
.
_sig_weights
=
np
.
empty
(
sum
(
self
.
y_train
==
1
))
self
.
_sig_weights
.
fill
(
self
.
class_weight
[
1
])
self
.
_sig_weights
*=
self
.
w_train
[
self
.
y_train
==
1
]
return
self
.
_sig_weights
def
plot_input
(
self
,
var_index
):
"
plot a single input variable
"
branch
=
self
.
branches
[
var_index
]
fig
,
ax
=
plt
.
subplots
()
bkg
=
self
.
x_train
[:,
var_index
][
self
.
y_train
==
0
]
sig
=
self
.
x_train
[:,
var_index
][
self
.
y_train
==
1
]
logger
.
debug
(
"
Plotting bkg (min={}, max={}) from {}
"
.
format
(
np
.
min
(
bkg
),
np
.
max
(
bkg
),
bkg
))
logger
.
debug
(
"
Plotting sig (min={}, max={}) from {}
"
.
format
(
np
.
min
(
sig
),
np
.
max
(
sig
),
sig
))
ax
.
hist
(
bkg
,
color
=
"
b
"
,
alpha
=
0.5
,
bins
=
50
,
weights
=
self
.
bkg_weights
)
ax
.
hist
(
sig
,
color
=
"
r
"
,
alpha
=
0.5
,
bins
=
50
,
weights
=
self
.
sig_weights
)
ax
.
set_xlabel
(
branch
+
"
(transformed)
"
)
plot_dir
=
os
.
path
.
join
(
self
.
project_dir
,
"
plots
"
)
if
not
os
.
path
.
exists
(
plot_dir
):
os
.
mkdir
(
plot_dir
)
fig
.
savefig
(
os
.
path
.
join
(
plot_dir
,
"
var_{}.pdf
"
.
format
(
var_index
)))
def
plotROC
(
self
):
pass
...
...
@@ -272,7 +343,8 @@ class KerasROOTClassification:
if
__name__
==
"
__main__
"
:
logging
.
basicConfig
()
logging
.
getLogger
(
"
KerasROOTClassification
"
).
setLevel
(
logging
.
INFO
)
#logging.getLogger("KerasROOTClassification").setLevel(logging.INFO)
logging
.
getLogger
(
"
KerasROOTClassification
"
).
setLevel
(
logging
.
DEBUG
)
filename
=
"
/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root
"
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment