Newer
Older
Christoph Fischer
committed
from enstools.feature.identification import IdentificationTechnique
import xarray as xr
import numpy as np
import os, sys
import metpy.calc as mpcalc
from .util import calc_adv
from matplotlib import pyplot as plt
import cartopy.crs as ccrs
from .filtering import keep_wavetrough
from .processing import populate_object
from skimage.draw import line_aa
from enstools.feature.util.enstools_utils import get_vertical_dim, get_longitude_dim, get_latitude_dim
Christoph Fischer
committed
class AEWIdentification(IdentificationTechnique):
def __init__(self, wt_out_file=False, wt_traj_dir=None, cv='cv', year_summer=None, month=None, **kwargs):
Christoph Fischer
committed
"""
Initialize the AEW Identification.
Parameters (experimental)
----------
kwargs
wt_out_file: output the wavetroughs as new and only out-field in 0.5x0.5
year_summer: if set, process AEW season (01.06.-31.10.) of given year
Christoph Fischer
committed
"""
import enstools.feature.identification.african_easterly_waves.configuration as cfg
self.config = cfg # config
self.config.cv_name = cv
if year_summer is not None:
if month is not None:
m_str = str(month).zfill(2)
self.config.start_date = str(year_summer) + '-' + m_str + '-01T00:00'
self.config.end_date = str(year_summer) + '-' + m_str + '-30T00:00'
else:
self.config.start_date = str(year_summer) + '-06-01T00:00'
self.config.end_date = str(year_summer) + '-10-31T00:00'
self.config.sum_over_all = True
self.lock_ = threading.Lock()
Christoph Fischer
committed
pass
def precompute(self, dataset: xr.Dataset, **kwargs):
print("Precompute for PV identification...")
plt.switch_backend('agg') # this is thread safe matplotlib but cant display.
Christoph Fischer
committed
# --------------- CLIMATOLOGY
lon_range = self.config.data_lon
lat_range = self.config.data_lat
clim_file = self.config.get_clim_file()
level_str = get_vertical_dim(dataset)
lat_str = get_latitude_dim(dataset)
lon_str = get_longitude_dim(dataset)
Christoph Fischer
committed
if os.path.isfile(clim_file):
cv_clim = xr.open_dataset(clim_file)
Christoph Fischer
committed
# generate: need all 40y of CV data.
print("Climatology file not found. Computing climatology...")
from .climatology import compute_climatology
cv_clim = compute_climatology(self.config)
cv_clim.to_netcdf(clim_file)
cv_clim = cv_clim.sel(
**{lat_str: slice(lat_range[0], lat_range[1])},
**{lon_str: slice(lon_range[0], lon_range[1])})
Christoph Fischer
committed
# --------------- SUBSET DATA ACCORDING TO CFG
start_date_dt = np.datetime64(self.config.start_date) if self.config.start_date is not None else None
end_date_dt = np.datetime64(self.config.end_date) if self.config.end_date is not None else None
Christoph Fischer
committed
# get the data we want to investigate
**{lat_str: slice(lat_range[0], lat_range[1])},
**{lon_str: slice(lon_range[0], lon_range[1])},
time=slice(start_date_dt, end_date_dt))
# dataset = dataset.expand_dims('level')
# level_str = 'level'
if level_str is not None:
print(dataset)
print(level_str)
print(self.config.levels)
dataset = dataset.sel(**{level_str: self.config.levels})
# rename cv_clim dimensions to be same as in data.
cv_clim = cv_clim.rename({'lat': lat_str, 'lon': lon_str})
if 'plev' in cv_clim.dims and 'plev' != level_str:
print("plev from clim to level: div by 100.")
cv_clim = cv_clim.rename({'plev': level_str})
cv_clim = cv_clim.assign_coords({level_str: cv_clim[level_str] / 100})
if self.config.cv_name not in dataset.data_vars:
print("Curvature Vorticity not found, trying to compute it out of U and V...")
get_u_dim(dataset)
get_v_dim(dataset)
compute_cv(dataset, u, v)
Christoph Fischer
committed
# make sure that lat and lon are last two dimensions
if lat_str not in dataset[self.config.cv_name].coords.dims[-2:] or lon_str not in dataset[
self.config.cv_name].coords.dims[
-2:]:
Christoph Fischer
committed
print("Reordering dimensions so lat and lon at back. Required for metpy.calc.")
dataset = dataset.transpose(..., lat_str, lon_str)
Christoph Fischer
committed
# --------------- DO NUMPY PARALLELIZED STUFF: CREATE TROUGH MASKS
u = dataset.u if 'u' in dataset.data_vars else dataset.U
v = dataset.v if 'v' in dataset.data_vars else dataset.V
cv = dataset[self.config.cv_name]
Christoph Fischer
committed
# smooth CV with kernel
cv = mpcalc.smooth_n_point(cv, n=9, passes=2).metpy.dequantify()
Christoph Fischer
committed
# create hourofyear to get anomalies
cv = cv.assign_coords(hourofyear=cv.time.dt.strftime("%m-%d %H"))
cv_anom = cv.groupby('hourofyear') - cv_clim.cv
Christoph Fischer
committed
# compute advection of cv: first and second derivative
adv1, adv2 = calc_adv(cv_anom, u, v)
# xr.where() anomaly data exceeds the percentile from the hourofyear climatology:
# replace data time with hourofyear -> compare with climatology percentile -> back to real time
cv_anom_h = cv_anom.swap_dims(dims_dict={'time': 'hourofyear'})
perc_mask_h = cv_anom_h.where(
cv_anom_h > cv_clim.cva_quantile_hoy.sel(dict(hourofyear=cv_anom.hourofyear.data)))
perc_mask = perc_mask_h.swap_dims(dims_dict={'hourofyear': 'time'})
cv_perc_thresh = np.nanpercentile(cv, self.config.cv_percentile) # 66th percentile of cv anomalies
print(cv_perc_thresh)
print('Locating wave troughs...')
# filter the advection field given our conditions:
trough_mask = adv1.where(np.logical_and(
~np.isnan(perc_mask), # percentile of anomaly over threshold from climatology
adv2.values > self.config.second_advection_min_thr,
# second time derivative > 0: dont detect local minima over the percentile
u.values < self.config.max_u_thresh)) # threshold for propagation speed -> keep only westward
dataset['trough_mask'] = trough_mask
# create 0.5x0.5 dataarray for wavetroughs
min_lat = dataset[lat_str].data.min()
max_lat = dataset[lat_str].data.max()
min_lon = dataset[lon_str].data.min()
max_lon = dataset[lon_str].data.max()
lat05 = np.linspace(min_lat, max_lat, int((max_lat - min_lat) * 2) + 1)
lon05 = np.linspace(min_lon, max_lon, int((max_lon - min_lon) * 2) + 1)
# 0.5x0.5 for wavetroughs
wt = xr.zeros_like(dataset['trough_mask'], dtype=float)
wt = wt.isel(**{lat_str: 0}).drop(lat_str).isel(**{lon_str: 0}).drop(lon_str)
wt = wt.expand_dims(lon05=lon05).expand_dims(lat05=lat05)
wt = wt.transpose(..., 'lat05', 'lon05')
dataset['wavetroughs'] = wt
dataset['wavetroughs'].attrs['units'] = 'prob'
dataset['wavetroughs'].attrs['standard_name'] = 'wavetroughs'
dataset['wavetroughs'].attrs['long_name'] = 'position_of_wavetrough'
dataset['lat05'].attrs['long_name'] = 'latitude'
dataset['lat05'].attrs['standard_name'] = 'latitude'
dataset['lon05'].attrs['long_name'] = 'longitude'
dataset['lon05'].attrs['standard_name'] = 'longitude'
dataset['lat05'].attrs['units'] = 'degrees_north'
dataset['lon05'].attrs['units'] = 'degrees_east'
return dataset
Christoph Fischer
committed
def identify(self, data_chunk: xr.Dataset, **kwargs):
objs = []
trough_mask_cur = data_chunk.trough_mask
def clip(tup, mint, maxt):
return np.clip(tup, mint, maxt)
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 15), subplot_kw={'projection': ccrs.PlateCarree()})
Christoph Fischer
committed
# generate zero-contours with matplotlib core
c = trough_mask_cur.plot.contour(transform=ccrs.PlateCarree(), colors='blue', levels=[0.0],
subplot_kws={'projection': ccrs.PlateCarree()})
Christoph Fischer
committed
paths = c.collections[0].get_paths()
wt = data_chunk.wavetroughs
min_lat = wt.lat05.data.min()
max_lat = wt.lat05.data.max()
min_lon = wt.lon05.data.min()
max_lon = wt.lon05.data.max()
lons = len(wt.lon05.data)
lats = len(wt.lat05.data)
id_ = 1
for path in paths:
# get new object, set id
o = self.get_new_object()
# populate it
populate_object(o.properties, path)
# add to objects if keep
if keep_wavetrough(o.properties, self.config):
objs.append(o)
id_ += 1
for v_idx in range(len(path.vertices) - 1):
start_lonlat = path.vertices[v_idx][0], path.vertices[v_idx][1]
end_lonlat = path.vertices[v_idx + 1][0], path.vertices[v_idx + 1][1]
start_idx = ((start_lonlat[0] - min_lon) / (max_lon - min_lon) * lons,
(start_lonlat[1] - min_lat) / (max_lat - min_lat) * lats)
# start_idx = clip(start_idx, (0, 0), (lons, lats))
end_idx = ((end_lonlat[0] - min_lon) / (max_lon - min_lon) * lons,
(end_lonlat[1] - min_lat) / (max_lat - min_lat) * lats)
# end_idx = clip(end_idx, (0, 0), (lons, lats))
rr, cc, val = line_aa(int(start_idx[0]), int(start_idx[1]), int(end_idx[0]), int(end_idx[1]))
rr = clip(rr, 0, lons - 1)
cc = clip(cc, 0, lats - 1)
wt.data[cc, rr] = np.where(np.greater(val, wt.data[cc, rr]), val, wt.data[cc, rr])
Christoph Fischer
committed
def postprocess(self, dataset: xr.Dataset, data_desc, **kwargs):
Christoph Fischer
committed
lat_str = get_latitude_dim(dataset)
lon_str = get_longitude_dim(dataset)
data_desc = self.make_ids_unique(data_desc)
# drop everything, only keep WTs as 0.5x0.5
if self.config.out_wt:
for var in dataset.data_vars:
if var not in ['wavetroughs']:
dataset = dataset.drop_vars([var])
# wavetroughs are 0.5x0.5 in lat05,lon05 field. remove other stuff
for dim in dataset.dims:
if dim in [lat_str, lon_str, 'hourofyear', 'quantile']:
dataset = dataset.drop_vars([dim])
dataset = dataset.rename({'lat05': lat_str, 'lon05': lon_str})
level_str = get_vertical_dim(dataset)
if level_str is not None:
dataset = dataset.squeeze(drop=True)
if self.config.sum_over_all:
dataset['wavetroughs'] = dataset.wavetroughs.sum(dim='time')
# create met3d like trajectories TODO not really working right now...
if self.config.out_traj_dir:
if not os.path.exists(self.config.out_traj_dir):
os.makedirs(self.config.out_traj_dir)
assert(len(data_desc.sets) == 1) # TODO assert one set. maybe expand at some point
desc_set = data_desc.sets[0]
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
desc_times = desc_set.timesteps
for idx, ts in enumerate(desc_times):
# need to make separate dataset for each init-time
# because number of trajs (WTs) are different from time to time
dataset_wt = xr.Dataset()
lon_list = []
lat_list = []
pres_list = []
max_pts_in_wt = -1 # TODO what if no wts
for o in ts.objects: # get lons and lats
pt_list = o.properties.line_pts
lon_list.append(np.array([pt.lon for pt in pt_list]))
lat_list.append(np.array([pt.lat for pt in pt_list]))
pres_list.append(np.array([850.0 for pt in pt_list]))
max_pts_in_wt = max(max_pts_in_wt, len(lon_list[-1]))
# go again and fill with NaNs at end
for i in range(len(lon_list)): # get lons and lats
lon_list[i] = np.pad(lon_list[i], (0, max_pts_in_wt - len(lon_list[i])), mode='constant',
constant_values=np.nan)
lat_list[i] = np.pad(lat_list[i], (0, max_pts_in_wt - len(lat_list[i])), mode='constant',
constant_values=np.nan)
pres_list[i] = np.pad(pres_list[i], (0, max_pts_in_wt - len(pres_list[i])), mode='constant',
constant_values=np.nan)
dataset_wt = dataset_wt.expand_dims(time=np.arange(0, max_pts_in_wt).astype(dtype=float)) # fake traj time
dataset_wt = dataset_wt.expand_dims(ensemble=[0])
dataset_wt = dataset_wt.expand_dims(trajectory=np.arange(1, len(ts.objects) + 1))
lons = xr.DataArray(np.zeros((1, len(ts.objects), max_pts_in_wt)), dims=("ensemble", "trajectory", "time"))
lons.attrs['standard_name'] = "longitude"
lons.attrs['long_name'] = "longitude"
lons.attrs['units'] = "degrees_east"
lats = xr.zeros_like(lons)
lats.attrs['standard_name'] = "latitude"
lats.attrs['long_name'] = "latitude"
lats.attrs['units'] = "degrees_north"
pres = xr.zeros_like(lons)
pres.attrs['standard_name'] = "air_pressure"
pres.attrs['long_name'] = "pressure"
pres.attrs['units'] = "hPa"
pres.attrs['positive'] = "down"
pres.attrs['axis'] = "Z"
dataset_wt['lon'] = lons
dataset_wt['lat'] = lats
dataset_wt['pressure'] = pres
# TODO auxiliary smth?
lon_list_np = np.array(lon_list)
lat_list_np = np.array(lat_list)
pres_list_np = np.array(pres_list)
dataset_wt['lon'].data[0] = lon_list_np
dataset_wt['lat'].data[0] = lat_list_np
dataset_wt['pressure'].data[0] = pres_list_np
dataset_wt['time'].attrs['standard_name'] = "time"
dataset_wt['time'].attrs['long_name'] = "time"
dataset_wt['time'].attrs['units'] = "hours since " + ts.valid_time.replace('T', ' ')
dataset_wt['time'].attrs['trajectory_starttime'] = ts.valid_time.replace('T', ' ')
dataset_wt['time'].attrs['forecast_inittime'] = ts.valid_time.replace('T', ' ') # '2006-09-01 12:00:00' # TODO ts.valid_time.replace('T', ' ')
out_path = self.config.out_traj_dir + ts.valid_time.replace(':','_') + '.nc'
dataset_wt.to_netcdf(out_path)