Newer
Older
Christoph Fischer
committed
from enstools.feature.identification import IdentificationTechnique
import xarray as xr
import numpy as np
import os, sys
import metpy.calc as mpcalc
from .util import calc_adv
from matplotlib import pyplot as plt
import cartopy.crs as ccrs
from .filtering import keep_wavetrough
from .processing import populate_object
from skimage.draw import line_aa
from enstools.feature.util.enstools_utils import get_vertical_dim, get_longitude_dim, get_latitude_dim
Christoph Fischer
committed
class AEWIdentification(IdentificationTechnique):
def __init__(self, wt_out_file=True, cv='cv', **kwargs):
Christoph Fischer
committed
"""
Initialize the AEW Identification.
Parameters (experimental)
----------
kwargs
wt_out_file: output the wavetroughs as new and only out-field in 0.5x0.5
Christoph Fischer
committed
"""
import enstools.feature.identification.african_easterly_waves.configuration as cfg
self.config = cfg # config
self.config.out_wt = wt_out_file
self.config.cv_name = cv
self.processing_mode = '2d'
Christoph Fischer
committed
pass
def precompute(self, dataset: xr.Dataset, **kwargs):
print("Precompute for PV identification...")
plt.switch_backend('agg') # this is thread safe matplotlib but cant display.
Christoph Fischer
committed
# --------------- CLIMATOLOGY
lon_range = self.config.data_lon
lat_range = self.config.data_lat
clim_file = self.config.get_clim_file()
level_str = get_vertical_dim(dataset)
lat_str = get_latitude_dim(dataset)
lon_str = get_longitude_dim(dataset)
Christoph Fischer
committed
if os.path.isfile(clim_file):
cv_clim = xr.open_dataset(clim_file)
Christoph Fischer
committed
# generate: need all 40y of CV data.
print("Climatology file not found. Computing climatology...")
from .climatology import compute_climatology
cv_clim = compute_climatology(self.config)
cv_clim.to_netcdf(clim_file)
# --------------- SUBSET DATA ACCORDING TO CFG
start_date_dt = np.datetime64(self.config.start_date) if self.config.start_date is not None else None
end_date_dt = np.datetime64(self.config.end_date) if self.config.end_date is not None else None
Christoph Fischer
committed
# get the data we want to investigate
dataset = dataset.sel(**{level_str: self.config.levels},
**{lat_str: slice(lat_range[0], lat_range[1])},
**{lon_str: slice(lon_range[0], lon_range[1])},
Christoph Fischer
committed
time=slice(start_date_dt, end_date_dt))
# make sure that lat and lon are last two dimensions
if lat_str not in dataset[self.config.cv_name].coords.dims[-2:] or lon_str not in dataset[self.config.cv_name].coords.dims[-2:]:
Christoph Fischer
committed
print("Reordering dimensions so lat and lon at back. Required for metpy.calc.")
dataset = dataset.transpose(..., lat_str, lon_str)
Christoph Fischer
committed
# --------------- DO NUMPY PARALLELIZED STUFF: CREATE TROUGH MASKS
u = dataset.u if 'u' in dataset.data_vars else dataset.U
v = dataset.v if 'v' in dataset.data_vars else dataset.V
cv = dataset[self.config.cv_name]
Christoph Fischer
committed
# smooth CV with kernel
Christoph Fischer
committed
cv = mpcalc.smooth_n_point(cv, n=9, passes=2).metpy.dequantify()
# create hourofyear to get anomalies
cv = cv.assign_coords(hourofyear=cv.time.dt.strftime("%m-%d %H"))
Christoph Fischer
committed
cv_anom = cv.groupby('hourofyear') - cv_clim.cv
Christoph Fischer
committed
# compute advection of cv: first and second derivative
adv1, adv2 = calc_adv(cv_anom, u, v)
# xr.where() anomaly data exceeds the percentile from the hourofyear climatology:
# replace data time with hourofyear -> compare with climatology percentile -> back to real time
cv_anom_h = cv_anom.swap_dims(dims_dict={'time': 'hourofyear'})
perc_mask_h = cv_anom_h.where(
cv_anom_h > cv_clim.cva_quantile_hoy.sel(dict(hourofyear=cv_anom.hourofyear.data)))
perc_mask = perc_mask_h.swap_dims(dims_dict={'hourofyear': 'time'})
cv_perc_thresh = np.nanpercentile(cv, self.config.cv_percentile) # 66th percentile of cv anomalies
print(cv_perc_thresh)
print('Locating wave troughs...')
# filter the advection field given our conditions:
trough_mask = adv1.where(np.logical_and(
~np.isnan(perc_mask), # percentile of anomaly over threshold from climatology
adv2.values > self.config.second_advection_min_thr,
# second time derivative > 0: dont detect local minima over the percentile
u.values < self.config.max_u_thresh)) # threshold for propagation speed -> keep only westward
dataset['trough_mask'] = trough_mask
# create 0.5x0.5 dataarray for wavetroughs
min_lat = dataset[lat_str].data.min()
max_lat = dataset[lat_str].data.max()
min_lon = dataset[lon_str].data.min()
max_lon = dataset[lon_str].data.max()
lat05 = np.linspace(min_lat, max_lat, int((max_lat - min_lat) * 2) + 1)
lon05 = np.linspace(min_lon, max_lon, int((max_lon - min_lon) * 2) + 1)
# wt = xr.DataArray(coords=[('lon05', lon05), ('lat05', lat05)],
wt = xr.zeros_like(dataset['trough_mask'], dtype=float)
wt = wt.isel(lat=0).drop(lat_str).isel(lon=0).drop(lon_str)
wt = wt.expand_dims(lon05=lon05).expand_dims(lat05=lat05)
wt = wt.transpose(..., 'lat05', 'lon05')
dataset['wavetroughs'] = wt
dataset['lat05'].attrs['long_name'] = 'latitude'
dataset['lon05'].attrs['long_name'] = 'longitude'
dataset['lat05'].attrs['units'] = 'degrees_north'
dataset['lon05'].attrs['units'] = 'degrees_east'
return dataset
Christoph Fischer
committed
def identify(self, data_chunk: xr.Dataset, **kwargs):
objs = []
trough_mask_cur = data_chunk.trough_mask
def clip(tup, mint, maxt):
return np.clip(tup, mint, maxt)
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 15), subplot_kw = {'projection': ccrs.PlateCarree()})
Christoph Fischer
committed
# generate zero-contours with matplotlib core
c = trough_mask_cur.plot.contour(transform=ccrs.PlateCarree(), colors='blue', levels=[0.0], subplot_kws={'projection': ccrs.PlateCarree()})
Christoph Fischer
committed
paths = c.collections[0].get_paths()
wt = data_chunk.wavetroughs
# TODO path to data field...
# maybe skimage draw line(), but consider lat/lons...
Christoph Fischer
committed
min_lat = wt.lat05.data.min()
max_lat = wt.lat05.data.max()
min_lon = wt.lon05.data.min()
max_lon = wt.lon05.data.max()
lons = len(wt.lon05.data)
lats = len(wt.lat05.data)
id_ = 1
for path in paths:
# get new object, set id
o = self.get_new_object()
# populate it
populate_object(o.properties, path)
# add to objects if keep
if keep_wavetrough(o.properties, self.config):
if not self.config.out_wt:
continue
for v_idx in range(len(path.vertices) - 1):
start_lonlat = path.vertices[v_idx][0], path.vertices[v_idx][1]
end_lonlat = path.vertices[v_idx + 1][0], path.vertices[v_idx + 1][1]
start_idx = ((start_lonlat[0] - min_lon) / (max_lon - min_lon) * lons,
(start_lonlat[1] - min_lat) / (max_lat - min_lat) * lats)
# start_idx = clip(start_idx, (0, 0), (lons, lats))
end_idx = ((end_lonlat[0] - min_lon) / (max_lon - min_lon) * lons,
(end_lonlat[1] - min_lat) / (max_lat - min_lat) * lats)
# end_idx = clip(end_idx, (0, 0), (lons, lats))
rr, cc, val = line_aa(int(start_idx[0]), int(start_idx[1]), int(end_idx[0]), int(end_idx[1]))
rr = clip(rr, 0, lons - 1)
cc = clip(cc, 0, lats - 1)
wt.data[cc, rr] = np.where(np.greater(val, wt.data[cc, rr]), val, wt.data[cc, rr])
Christoph Fischer
committed
def postprocess(self, dataset: xr.Dataset, pb2_desc, **kwargs):
lat_str = get_latitude_dim(dataset)
lon_str = get_longitude_dim(dataset)
# drop everything, only keep WTs TODO as config.
if self.config.out_wt:
for var in dataset.data_vars:
if var not in ['wavetroughs']:
dataset = dataset.drop_vars([var])
dataset = dataset.drop_vars([lat_str, lon_str, 'hourofyear', 'quantile']) # TODO only if exist
dataset = dataset.rename({'lat05': 'lat', 'lon05': 'lon'})
Christoph Fischer
committed
return dataset, pb2_desc