from enstools.feature.identification import IdentificationTechnique import xarray as xr import numpy as np import os, sys import metpy.calc as mpcalc from .util import calc_adv from matplotlib import pyplot as plt import cartopy.crs as ccrs from .filtering import keep_wavetrough from .processing import populate_object from skimage.draw import line_aa from enstools.feature.util.enstools_utils import get_vertical_dim, get_longitude_dim, get_latitude_dim class AEWIdentification(IdentificationTechnique): def __init__(self, wt_out_file=True, cv='cv', **kwargs): """ Initialize the AEW Identification. Parameters (experimental) ---------- kwargs wt_out_file: output the wavetroughs as new and only out-field in 0.5x0.5 """ import enstools.feature.identification.african_easterly_waves.configuration as cfg self.config = cfg # config self.config.out_wt = wt_out_file self.config.cv_name = cv self.processing_mode = '2d' pass def precompute(self, dataset: xr.Dataset, **kwargs): print("Precompute for PV identification...") plt.switch_backend('agg') # this is thread safe matplotlib but cant display. # --------------- CLIMATOLOGY lon_range = self.config.data_lon lat_range = self.config.data_lat clim_file = self.config.get_clim_file() level_str = get_vertical_dim(dataset) lat_str = get_latitude_dim(dataset) lon_str = get_longitude_dim(dataset) if os.path.isfile(clim_file): cv_clim = xr.open_dataset(clim_file) else: # generate: need all 40y of CV data. print("Climatology file not found. Computing climatology...") from .climatology import compute_climatology cv_clim = compute_climatology(self.config) cv_clim.to_netcdf(clim_file) # --------------- SUBSET DATA ACCORDING TO CFG start_date_dt = np.datetime64(self.config.start_date) if self.config.start_date is not None else None end_date_dt = np.datetime64(self.config.end_date) if self.config.end_date is not None else None # get the data we want to investigate dataset = dataset.sel(**{level_str: self.config.levels}, **{lat_str: slice(lat_range[0], lat_range[1])}, **{lon_str: slice(lon_range[0], lon_range[1])}, time=slice(start_date_dt, end_date_dt)) # make sure that lat and lon are last two dimensions if lat_str not in dataset[self.config.cv_name].coords.dims[-2:] or lon_str not in dataset[self.config.cv_name].coords.dims[-2:]: print("Reordering dimensions so lat and lon at back. Required for metpy.calc.") dataset = dataset.transpose(..., lat_str, lon_str) # --------------- DO NUMPY PARALLELIZED STUFF: CREATE TROUGH MASKS u = dataset.u if 'u' in dataset.data_vars else dataset.U v = dataset.v if 'v' in dataset.data_vars else dataset.V cv = dataset[self.config.cv_name] # smooth CV with kernel print('c') cv = mpcalc.smooth_n_point(cv, n=9, passes=2).metpy.dequantify() # create hourofyear to get anomalies cv = cv.assign_coords(hourofyear=cv.time.dt.strftime("%m-%d %H")) print('b') cv_anom = cv.groupby('hourofyear') - cv_clim.cv print('a') # compute advection of cv: first and second derivative adv1, adv2 = calc_adv(cv_anom, u, v) # xr.where() anomaly data exceeds the percentile from the hourofyear climatology: # replace data time with hourofyear -> compare with climatology percentile -> back to real time cv_anom_h = cv_anom.swap_dims(dims_dict={'time': 'hourofyear'}) perc_mask_h = cv_anom_h.where( cv_anom_h > cv_clim.cva_quantile_hoy.sel(dict(hourofyear=cv_anom.hourofyear.data))) perc_mask = perc_mask_h.swap_dims(dims_dict={'hourofyear': 'time'}) cv_perc_thresh = np.nanpercentile(cv, self.config.cv_percentile) # 66th percentile of cv anomalies print(cv_perc_thresh) print('Locating wave troughs...') # filter the advection field given our conditions: trough_mask = adv1.where(np.logical_and( ~np.isnan(perc_mask), # percentile of anomaly over threshold from climatology adv2.values > self.config.second_advection_min_thr, # second time derivative > 0: dont detect local minima over the percentile u.values < self.config.max_u_thresh)) # threshold for propagation speed -> keep only westward dataset['trough_mask'] = trough_mask # create 0.5x0.5 dataarray for wavetroughs min_lat = dataset[lat_str].data.min() max_lat = dataset[lat_str].data.max() min_lon = dataset[lon_str].data.min() max_lon = dataset[lon_str].data.max() lat05 = np.linspace(min_lat, max_lat, int((max_lat - min_lat) * 2) + 1) lon05 = np.linspace(min_lon, max_lon, int((max_lon - min_lon) * 2) + 1) # wt = xr.DataArray(coords=[('lon05', lon05), ('lat05', lat05)], wt = xr.zeros_like(dataset['trough_mask'], dtype=float) wt = wt.isel(lat=0).drop(lat_str).isel(lon=0).drop(lon_str) wt = wt.expand_dims(lon05=lon05).expand_dims(lat05=lat05) wt = wt.transpose(..., 'lat05', 'lon05') dataset['wavetroughs'] = wt dataset['lat05'].attrs['long_name'] = 'latitude' dataset['lon05'].attrs['long_name'] = 'longitude' dataset['lat05'].attrs['units'] = 'degrees_north' dataset['lon05'].attrs['units'] = 'degrees_east' return dataset def identify(self, data_chunk: xr.Dataset, **kwargs): objs = [] trough_mask_cur = data_chunk.trough_mask def clip(tup, mint, maxt): return np.clip(tup, mint, maxt) fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 15), subplot_kw = {'projection': ccrs.PlateCarree()}) # generate zero-contours with matplotlib core c = trough_mask_cur.plot.contour(transform=ccrs.PlateCarree(), colors='blue', levels=[0.0], subplot_kws={'projection': ccrs.PlateCarree()}) paths = c.collections[0].get_paths() wt = data_chunk.wavetroughs # TODO path to data field... # maybe skimage draw line(), but consider lat/lons... min_lat = wt.lat05.data.min() max_lat = wt.lat05.data.max() min_lon = wt.lon05.data.min() max_lon = wt.lon05.data.max() lons = len(wt.lon05.data) lats = len(wt.lat05.data) id_ = 1 for path in paths: # get new object, set id o = self.get_new_object() o.id = id_ # populate it populate_object(o.properties, path) # add to objects if keep if keep_wavetrough(o.properties, self.config): objs.append(o) id_ += 1 if not self.config.out_wt: continue for v_idx in range(len(path.vertices) - 1): start_lonlat = path.vertices[v_idx][0], path.vertices[v_idx][1] end_lonlat = path.vertices[v_idx + 1][0], path.vertices[v_idx + 1][1] start_idx = ((start_lonlat[0] - min_lon) / (max_lon - min_lon) * lons, (start_lonlat[1] - min_lat) / (max_lat - min_lat) * lats) # start_idx = clip(start_idx, (0, 0), (lons, lats)) end_idx = ((end_lonlat[0] - min_lon) / (max_lon - min_lon) * lons, (end_lonlat[1] - min_lat) / (max_lat - min_lat) * lats) # end_idx = clip(end_idx, (0, 0), (lons, lats)) rr, cc, val = line_aa(int(start_idx[0]), int(start_idx[1]), int(end_idx[0]), int(end_idx[1])) rr = clip(rr, 0, lons - 1) cc = clip(cc, 0, lats - 1) wt.data[cc, rr] = np.where(np.greater(val, wt.data[cc, rr]), val, wt.data[cc, rr]) return data_chunk, objs def postprocess(self, dataset: xr.Dataset, pb2_desc, **kwargs): lat_str = get_latitude_dim(dataset) lon_str = get_longitude_dim(dataset) # drop everything, only keep WTs TODO as config. if self.config.out_wt: for var in dataset.data_vars: if var not in ['wavetroughs']: dataset = dataset.drop_vars([var]) dataset = dataset.drop_vars([lat_str, lon_str, 'hourofyear', 'quantile']) # TODO only if exist dataset = dataset.rename({'lat05': 'lat', 'lon05': 'lon'}) return dataset, pb2_desc