Skip to content
Snippets Groups Projects
workbook_su_ol.ipynb 538 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Workbook for Eye Tracking Data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Import Libraries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Basics\n",
    "import numpy as np\n",
    "import os\n",
    "import math\n",
    "\n",
    "# Data processing\n",
    "import pandas as pd\n",
    "import awkward as ak\n",
    "\n",
    "# ML\n",
    "import sklearn\n",
    "\n",
    "# Misc\n",
    "from pathlib import Path\n",
    "import pyarrow as pa\n",
    "import urllib.request"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Import data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Import users and their score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Imports the user score information\n",
    "user_data = pd.read_csv(r\"data\\scores_WtG_PrePost.csv\", delimiter=\",\", usecols=[\"User\", \"Pre score\", \"Post score\", \"Difference\", \"Group cat\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Defines my directory with the user data\n",
    "user_dir = r'data\\with ET'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Filters and drops non-relevant users\n",
    "to_drop = []\n",
    "for i, cat in enumerate(user_data[\"Group cat\"]):\n",
    "    if math.isnan(cat):\n",
    "        to_drop.append(i)\n",
    "user_data = user_data.drop(to_drop)\n",
Rhino's avatar
Rhino committed
    "user_data = user_data.reset_index(drop=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Filters and drops users with no directory\n",
    "not_existing_names = []\n",
    "for i, user in enumerate(user_data[\"User\"]):\n",
    "    if not os.path.isdir(user_dir + '/' + user):\n",
    "        not_existing_names.append(i)\n",
    "user_data = user_data.drop(not_existing_names)\n",
Rhino's avatar
Rhino committed
    "user_data = user_data.reset_index(drop=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "tags": []
   },
Rhino's avatar
Rhino committed
   "outputs": [],
   "source": [
    "# Convert to awkward array\n",
Rhino's avatar
Rhino committed
    "array_user = ak.zip(dict(user_data))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Import Eye Tracking data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Creates dictionary with all the files for one user\n",
    "file_names = {}\n",
    "for user in user_data[\"User\"]:\n",
    "    #print(user)\n",
Rhino's avatar
Rhino committed
    "    available_files = []\n",
    "    available_files_temp = os.listdir(user_dir + '/' + user)\n",
    "    for file in available_files_temp:\n",
    "        if \"graph01-ET_planning\" in file:\n",
    "            available_files.append(file)\n",
    "    # print(available_files)\n",
    "    file_names[user] = available_files\n",
    "#file_names"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "tags": []
   },
Rhino's avatar
Rhino committed
   "outputs": [],
   "source": [
    "# Read each CSV file for one user, stored for each attempt\n",
    "df_attempt1 = []\n",
    "df_attempt2 = []\n",
Rhino's avatar
Rhino committed
    "attempt2_mask = []\n",
    "for user in user_data['User']:\n",
    "    files = file_names[user]\n",
    "    if len(files) == 2:\n",
Rhino's avatar
Rhino committed
    "        attempt2_mask.append(True)\n",
    "        df_attempt1.append(pd.read_csv(user_dir + '/' + user + '/' + files[0], delimiter=\"\t\", usecols=[\"eyeDataTimestamp\", \"gazePointAOI_target_x\", \"gazePointAOI_target_y\"]))\n",
    "        df_attempt2.append(pd.read_csv(user_dir + '/' + user + '/' + files[1], delimiter=\"\t\", usecols=[\"eyeDataTimestamp\", \"gazePointAOI_target_x\", \"gazePointAOI_target_y\"]))\n",
    "    elif len(files) == 1:\n",
Rhino's avatar
Rhino committed
    "        attempt2_mask.append(False)\n",
    "        df_attempt1.append(pd.read_csv(user_dir + '/' + user + '/' + files[0], delimiter=\"\t\", usecols=[\"eyeDataTimestamp\", \"gazePointAOI_target_x\", \"gazePointAOI_target_y\"]))\n",
Rhino's avatar
Rhino committed
    "        df_attempt2.append(pd.read_csv(user_dir + '/' + user + '/' + files[0], delimiter=\"\t\", usecols=[\"eyeDataTimestamp\", \"gazePointAOI_target_x\", \"gazePointAOI_target_y\"]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Add delta t list\n",
    "for attempt in [df_attempt1, df_attempt2]:\n",
    "    for i in range(len(attempt)):\n",
    "        temp_delta_t_list = []\n",
    "        for j in range(len(attempt[i][\"eyeDataTimestamp\"]) - 1):\n",
    "            temp_delta_t_list.append(attempt[i][\"eyeDataTimestamp\"][j+1] - attempt[i][\"eyeDataTimestamp\"][j])\n",
    "        temp_delta_t_list.append(np.mean(temp_delta_t_list))\n",
    "        attempt[i][\"deltaTimestamp\"] = temp_delta_t_list\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Convert df_attempts to ak.Array\n",
    "array_attempt1 = []\n",
    "array_attempt2 = []\n",
    "for df in df_attempt1:\n",
    "    array_attempt1.append(ak.Array(dict(df)))\n",
    "for df in df_attempt2:\n",
Rhino's avatar
Rhino committed
    "    array_attempt2.append(ak.Array(dict(df)))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Data processing"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "### Add Eye Tracking Data to user data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def add_column_old_broken(ak_array1, ak_array2, col_name):\n",
    "    entries = []\n",
    "    for entry, dataframe in zip(ak_array1, ak_array2):\n",
    "        entry_with_column = {**entry, col_name: dataframe}\n",
    "        print(entry_with_column)\n",
    "        entries.append(entry_with_column)\n",
    "    print(entries)\n",
    "    return ak.Array(entries)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def add_column_old(ak_array1, arrays, col_name):\n",
    "    return ak.zip({**{k: ak_array1[k] for k in ak_array1.fields}, col_name: arrays})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Adds a list of arrays in a new column to an array\n",
    "def add_column(ak_array, arrays, col_name):\n",
    "    combined_entries = [\n",
    "        {**{k: ak_array[k][i] for k in ak_array.fields}, col_name: array} for i, (entry, array) in enumerate(zip(ak_array, arrays))\n",
    "    ]\n",
    "    return ak.Array(combined_entries)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
Rhino's avatar
Rhino committed
   "metadata": {},
   "outputs": [],
   "source": [
Rhino's avatar
Rhino committed
    "labels_str = []\n",
    "labels_int_expert = []\n",
    "labels_int_good = []\n",
    "labels_int_bad = []\n",
    "\n",
Rhino's avatar
Rhino committed
    "for subject_name, pre_score, diff in zip(array_user[\"User\"], array_user[\"Pre score\"], array_user[\"Difference\"]):\n",
    "    if pre_score == 2 and diff == 0:\n",
    "        label_str = \"expert\"\n",
    "        label_int_expert = 1\n",
    "        label_int_good = 0  \n",
    "        label_int_bad = 0\n",
Rhino's avatar
Rhino committed
    "    elif diff <= 0:\n",
    "        label_str = \"bad\"\n",
    "        label_int_expert = 0\n",
    "        label_int_good = 0  \n",
    "        label_int_bad = 1\n",
Rhino's avatar
Rhino committed
    "    else:\n",
    "        label_str = \"good\"\n",
    "        label_int_expert = 0\n",
    "        label_int_good = 1\n",
    "        label_int_bad = 0\n",
Rhino's avatar
Rhino committed
    "    labels_str.append(label_str)\n",
    "    labels_int_expert.append(label_int_expert)   \n",
    "    labels_int_good.append(label_int_good)    \n",
    "    labels_int_bad.append(label_int_bad)    \n",
    " \n",
Rhino's avatar
Rhino committed
    "labels_str = ak.Array(labels_str)\n",
    "labels_int_expert = ak.Array(labels_int_expert)\n",
    "labels_int_good = ak.Array(labels_int_good)\n",
    "labels_int_bad = ak.Array(labels_int_bad)\n",
    "\n",
Rhino's avatar
Rhino committed
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {
    "tags": []
   },
Rhino's avatar
Rhino committed
   "outputs": [],
   "source": [
Rhino's avatar
Rhino committed
    "# Creates array with first and second attempts added as well as the labels arrays\n",
    "array_data = add_column(array_user, array_attempt1, 'Attempt1')\n",
    "array_data = add_column(array_data, array_attempt2, 'Attempt2')\n",
Rhino's avatar
Rhino committed
    "array_data['Labels Str'] = labels_str\n",
    "array_data['Labels Expert'] = labels_int_expert\n",
    "array_data['Labels Good'] = labels_int_good\n",
    "array_data['Labels Bad'] = labels_int_bad\n",
    "array_data[\"Attempt 2 Mask\"] = ak.Array(attempt2_mask)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [],
   "source": [
    "def minmax(data):\n",
    "    \"\"\"Get the min and max of an iterable in O(n) time and constant space.\"\"\"\n",
    "    minValue = data[0]\n",
    "    maxValue = data[0]\n",
    "    for d in data[1:]:\n",
    "        minValue = d if d < minValue else minValue\n",
    "        maxValue = d if d > maxValue else maxValue\n",
    "    return (minValue,maxValue)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "-0.4961899999999999 0.4198 -0.49335 0.24327\n"
     ]
    }
   ],
   "source": [
    "# Get Range of field of view\n",
    "min_max_x = []\n",
    "min_max_y = []\n",
    "for i, user in enumerate(array_data[\"User\"]):\n",
    "    min_x, max_x = minmax(array_data[\"Attempt1\"][i][\"gazePointAOI_target_x\"])\n",
    "    min_y, max_y = minmax(array_data[\"Attempt1\"][i][\"gazePointAOI_target_y\"])\n",
    "    min_max_x.extend([min_x, max_x])\n",
    "    min_max_y.extend([min_y, max_y])\n",
    "\n",
    "    if array_data[\"Attempt 2 Mask\"][i]:\n",
    "        min_x, max_x = minmax(array_data[\"Attempt2\"][i][\"gazePointAOI_target_x\"])\n",
    "        min_y, max_y = minmax(array_data[\"Attempt2\"][i][\"gazePointAOI_target_y\"])\n",
    "        min_max_x.extend([min_x, max_x])\n",
    "        min_max_y.extend([min_y, max_y])\n",
    "min_x, max_x = minmax(min_max_x)\n",
    "min_y, max_y = minmax(min_max_y)\n",
    "print(min_x, max_x, min_y, max_y)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hcVfnA8e+90+vO9l6ym03vPYGQQAIh9Ca9iIqAoCjqT7FQFKQjigiIIiAEQkcEAiQkIb33tr332Z3e597fH7PZzbJJCJBCwvk8zz67c+eWM5PN3nfOec97JFVVVQRBEARBEI4T8rFugCAIgiAIwpchghdBEARBEI4rIngRBEEQBOG4IoIXQRAEQRCOKyJ4EQRBEAThuCKCF0EQBEEQjisieBEEQRAE4bgighdBEARBEI4r2mPdgMNNURSampqw2WxIknSsmyMIgiAIwiFQVRWv10tOTg6yfPC+lRMueGlqaiI/P/9YN0MQBEEQhK+gvr6evLy8g+5zwgUvNpsNSLx4u91+jFsjCIIgCMKh8Hg85Ofn99zHD+aEC172DhXZ7XYRvAiCIAjCceZQUj5Ewq4gCIIgCMcVEbwIgiAIgnBcEcGLIAiCIAjHFRG8CIIgCIJwXBHBiyAIgiAIxxURvAiCIAiCcFwRwYsgCIIgCMcVEbwIgiAIgnBcEcGLIAiCIAjHFRG8CIIgCIJwXBHBiyAIgiAIxxURvAiCIAiCcFw54RZmFAThxNdUthuLIxmD2ULlhjW421oZO/dcTNYvXo1WEITjnwheBEE4rnTU1fDKnb8EVe2zvWLtSi753b2YkxzHpmGCIBw1YthIEITjSvnaVX0Cl6TMLMxJDtrravjXbTfQUVdz7BonCMJRIYIXQRCOG+GAn40L3gMgb+gIRp8+lyvvfZTL73kQgEgwyLZPPz6WTRQE4SgQwYsgCMeNHUs/JeT1kJyTx3d+fx+zf3ALZnsSydm5nPfz3wBQvm4V6ueGlARBOLGI4EUQhONGa1U5AENPmoGs0fR5rmjMeHQGI96Odloqyo5F8wRBOEpE8CIIwnGjvbYagPTCAf2e0+kNFI+fBMC83/2crYs+OqptEwTh6BHBiyAIx4V4LIqzoR6AjKLi/e4zbPqpPT8v/c8/j0q7BEE4+sRUaUEQjhMSF91xN876Wmxp6fvdo3DU2J6f84aOOFoNEwThKBM9L4IgHBc0Wi2FI8cw7qzzkSTpgPsMO+U0AOzpGUezeYIgHEUieBEE4YSSM2gIAF5nxzFuiSAIR4oIXgRBOKHYUhNDSt4OEbwIwolKBC+CIJxQ9ubDeJztx7glgiAcKSJ4EQThhGLvDl5CXg/RUOgYt0YQhCNBBC+CIBz32mqqqN+xFQCD2YLOYATA5+o8ls0SBOEIEcGLIAjHNVVVefuBu3n9j7/D2ZioA6M3mQBEz4sgnKBE8CIIwnEtHPDj6+pEVRXK16wEQGdM9LyI4EUQTkxHJXh58sknKSoqwmg0MnnyZNauXXvAfZ999lmmT59OcnIyycnJzJ49+6D7C4Lw7bbvlOjytd3BS/ewUTQsghdBOBEd8eBl/vz53H777dx1111s3LiR0aNHM2fOHNra2va7/5IlS7jiiitYvHgxq1atIj8/nzPOOIPGxsYj3VRBEI5D3n1mFbVVV+Jua+0NXkTPiyCckI548PLYY49xww03cP311zNs2DCefvppzGYzzz333H73f/nll/nRj37EmDFjGDJkCP/85z9RFIVFixYd6aYKgnAc+nw9l4p1q3qHjUTPiyCckI5o8BKJRNiwYQOzZ8/uvaAsM3v2bFatWnVI5wgEAkSjUVJSUvb7fDgcxuPx9PkSBOHbY2/Pi86YSNItX7sSncEAiOBFEE5URzR46ejoIB6Pk5mZ2Wd7ZmYmLS0th3SOX/3qV+Tk5PQJgPZ1//33k5SU1POVn5//tdstCMLxw9uRCF6Gz0isadS4ZxeR7uEiMWwkCCemb/RsowceeIBXX32Vt99+G2N3N/Dn3XHHHbjd7p6v+vr6o9xKQRCOpb0JuzmlQ8gaOAhUlabdOwGIhsPHsmmCIBwh2iN58rS0NDQaDa2trX22t7a2kpWVddBjH3nkER544AEWLlzIqFGjDrifwWDA0N1FLAjCt8/e4MWWmk7ppGm0VJQRi0YAiISCx7JpgiAcIUe050Wv1zN+/Pg+ybZ7k2+nTp16wOMeeugh/vjHP7JgwQImTJhwJJsoCMJxTFVVvJ3dwUtaGgMn9v27InpeBOHEdER7XgBuv/12rrvuOiZMmMCkSZN4/PHH8fv9XH/99QBce+215Obmcv/99wPw4IMPcueddzJv3jyKiop6cmOsVitWq/VIN1cQhONI0OMmHo2CJGFNSUWj1ZGaV4CzoQ6AmEjYFYQT0hEPXi677DLa29u58847aWlpYcyYMSxYsKAnibeurg5Z7u0Aeuqpp4hEIlxyySV9znPXXXdx9913H+nmCoJwHNk7ZGRJcqDR6gAonTytJ3gRCbuCcGI64sELwK233sqtt9663+eWLFnS53FNTc2Rb5AgCCcET/c0aVv3StIApZOmsfrNVwGIiJ4XQTghfaNnGwmCIBzM3gJ1ttS0nm3phQNIykj07IqeF0E4MYngRRCE49beAnW21N6eF0mSGDhpGiCK1AnCiUoEL4IgHFecDfW0VlXg6WjD3ZZI6N+35wVg6EkzkCQZk81+LJooCMIRdlRyXgRBEL6u1upKlr/6IjWbN/R7bt+eF4DM4oFc+/AT/YIaQRBODCJ4EQThG2/tu2+wbN7zAMgaDSZ7EkGPGyUeB/r3vACk5RcezSYKgnAUieBFEIRvLFVVWfbKC6x79w0ABk87hZMvuwZHVjaqqvK36y8lEgxitNqOcUsFQTiaRPAiCMI3UsDj5tPnnmbPqmUAzLj6e0w496Ke5yVJQmc0EQkGiUVEJV1B+DYRwYsgCN845WtWsvBffyfgdiHJMrO//yNGzT6z3356owk/EAkGjn4jBUE4ZkTwIgjCN4aixPnspX+z4f13gETeypybf0pWSel+99d1rzYv6rkIwreLCF4EQfhGCAcCvP/Xh6jetB6AiedfwrTvXIVWpzvgMXqTCRCrRwvCt40IXgRBOOZcrS2889AfcDbUodXpOfOWnzF46vQvPE5vFMGLIHwbieBFEIRjytPexrzf/Zygx401OYXzf/n7Aw4TfZ6uO3iJBkXwIgjfJqLCriAIx0w8FuN/f32IoMdNeuEArvrTnw85cAHQd+e8RLpzXlRVZas3QCiuHJH2CoLwzSCCF0EQjplVb8yjuWw3BrOF83/xW6wpqV/q+M/nvLzU5GTumj3cV9V02NsqCMI3hwheBEE4Jmq3bWbNO68DcPoPf0xSRtaXPkfPsFEoiD8eZ91zu7jtPRfz97Siquphba8gCN8cIngRBOGoC7hdfPi3R0FVGTXrTAZPPfkrnacnYTcY5G/lLQxujGIJqwxojVEZFIXrBOFEJYIXQRCOKlVR+PDvf8bv6iI1r4CZ1/3gK59r77BRNBSiptrdsz1okPDFRN6LIJyoRPAiCMJRtf79d6jZvAGt3sA5P/0VOoPxK59Lt89UaVt7b0+LKkGu8cD1YQRBOL6J4EUQhKOmuWIPy195AYBTr7vha6/8vG+dF4M/3rNdK0mk6UQlCEE4UYngRRCEoyIc8PP+Xx5CiccZNOVkRs6a87XP2bM8QDCIKdqboJui1yJJ0tc+vyAI30wieBEE4ahY9cY83G2t2NMzOf2Htx6W4KJ3qnSIDF9vjkuK6HURhBOa+B8uCMJR0VZTDcDUS67AaLEelnP2zjYKIDX4e7bbtZrDcn5BEL6ZRM+LIAhHRdDrAfjShegORrfPVGl1n8lFdkn8aROEE5n4Hy4IwlGxN3gx2eyH7Zx7e16UeAxV7U3YTd3qprXGc9iuIwjCN4sIXgRBOOJUVSXoOfzBy96E3cRFIoR0iTwaqcbPGw+s593HN9Gwp0tU2xWEE4zIeREE4YiLBIMo8RgAJpvtsJ1Xo9Wi0emIR6NAhE9HpVKbruO3rVq6tnTSsLuLht1dZA6wM/7MQopGpiHJYhaSIBzvRPAiCMIRt3fISGswfK2idP2UfYyeCEEk5tjv5R39E3QkaTj7nBHgirD5kzp2rmimtdrDB09tIyXHwvgzCxk4PgNZIzqeBeF4Jf73CoJwxAW9idL9JuvXGDLa+jr841RY8kDvtl3voiNRWdeqacWqbeFkhxW7VoM9zcQpVwzmmvumMm5OATqjhs4mP588t5OX71rN9s8aiUXjB7iYIAjfZCJ4EQThiAsHAgBo9V+jZL+nAZo2gqsu8ViJw6aX0MuJACSiaHBoWigxG/ocZkkyMPXCgVz3p2lMPq8Yo1WHpyPE0nl7+M/vVrHp4zoiodhXb5cgCEedGDYSBOGIyygcAJJEV3MT3s4ObClpX/4k0VDiu7Z72Kl2JQC6fYKX3FgzuSbD/o7GYNYx4awiRs/KZ+eKJjZ/UoevK8zKtyrYsKCGUafmMerUfIxWsSaSIHzTiZ4XQRCOOHOSg+zSwQBUbVj31U4SCya+6xLTo/nk9wA9PS9RRUNBsBl37OBDQTqDhtGn5XP1H6dy6jVDcGSaCQdirHu/hhd+u5Llb5Tj6wof9ByCIBxboudF+FYLBGro7FyORmNBp0tCq7Wj1SVhMRcjSaJK6+FUMm4SzWW7qdq4ltGnz/3yJ4h1BxTa7p6VktOgaRP6jBKo7iSiaCgMNbElFDmk02m0MsNOymHI1GyqNrWzYUENHfU+tiysZ9uSBoZMyWbsGQU4Msxfvq2CIBxRIngRvtV27vwFbs+mfttTU05hzJh/H4MWnbiKx09i+asvUrdtC9FwqGfWkW9tM5JGxjI+8+AniHb3vGi7e15O/S1Mvgn9iy9D9SIiioaiYBP1wUMLXvaSZYmB4zMoGZdO3c5ONnxYQ3OFm53Lm9i1oomBEzIZN6eQtLzDs6SBIAhfnwhehG+1cKQNALttFCoq0WgXoVADXa51qKoqViY+jNLyC7GnZ+Bpb6Nu+xZKxk/Gt7oJ1zuVABgGOtAm7T9fBYBYd86LrjvnRdaANaN3ZWlFQ0GoiYbQVxvykSSJwuGpFA5PpanCxcYFtdRud1K+rpXyda0UjUxl/NwisoqTvtL5BUE4fETwInyrKUriRjdk6P3YrEOIxwMsWToSRQkSj/vQag9fQbVvO0mSKB43kc0fvc+ej5Zi32giXOnueT5c1oV2YtaBT9DT89K3TkzP4oyKFrMSRvG2ElaGYZC/ekpfzkAHObc6aK/zsvGjWio2tlGzzUnNNic5pQ7Gzy0kf2iKCG4F4Rg5Kgm7Tz75JEVFRRiNRiZPnszatWsPuO+OHTu4+OKLKSoqQpIkHn/88aPRROFbam/wopETn/g1GjMaTWJ4IBxu+8rnjcW8xOMhysv/xPoN38HnL//6jT2OqapKpN5LRigPgOrtGwlVuKD73q+TquCD24hU1R74JD05L58LXkyJnJRId6BZEGqiKRQ9LO1OL7Ax54YRXHX3FIaelI2skWgqd/HeX7fw+v3rqdzUhqqIpQcE4Wg74sHL/Pnzuf3227nrrrvYuHEjo0ePZs6cObS17f/GEAgEKC4u5oEHHiAr6yCfwgThMFCURH6EJOl7thkMidyLvUNKX5bPt4flK05mydLh1NX/C7d7Ixs3XoHHs/XrN/g4E/dG8H7WQOufN9L25GbstVa0ko5Q3EdkjETW/00k584pJJufwqIuQP/iKCJbN/Y5x79XVHPm458RCvoTG/bONurWM2ykSQQvhaEm6g8xafdQOTLNnHbNUK65dyqjT8tHq5Npr/Oy4JntvPKHNexe1Uw8rnzxiQRBOCyOePDy2GOPccMNN3D99dczbNgwnn76acxmM88999x+9584cSIPP/wwl19+OQbDQca/BeFrUlW1p+dF1vT+rhkMGQBEvkLPi6qqlJf/iXjcBySCIoullGi0i42brqara81haPlBdFYf2fMfAjWuENzppOPFnTTfvxb3B9XE2gKglbGNy6Fg6GgAWrV1aJONyGYd+viunuP1b51KaHcTANsa3Nz7/i52t3iJhhOF7g40bBSVEt+Lgoc/eNnLmmzk5EtLufZP05hwVhEGs5aulgCLXtjFS79fxdbFDcQiomqvIBxpRzR4iUQibNiwgdmzZ/deUJaZPXs2q1atOizXCIfDeDyePl+CcChUtfcGt3fYCMCgTwQv4XDrlz6ns3MpnV3LAZlBpb9n4oS3mDD+DZKTpxKP+9m+46fE40eohsiSB+DJyVCx6Mic/wtEW/24Pqii+f61OF/cSWinExQVfb4Nx4UDyfndZFIuG0zpKScBULWxu95L0NXvXB0vVeHe0cEv39hCXFFJNuuwarqr4Or6Bi+6vTkvJHrPCkNNNByh4GUvk03P5POKufa+aUy9sASTXY+vM8yy+WW8+NuVbFhQQzgoqvYKwpFyRBN2Ozo6iMfjZGb2nQKZmZnJ7t27D8s17r//fu65557Dci7h22XvkBGALPcOG+m7e17Ckfae/draFmC3j8RsHnCQ88UoL78fgIKC75Gf/92e50aP+herV88mFG6iqfk18vOuOZwvJVEqv3krxMPw6pVwxatQcurhvcb+LhuKEdjSTmBDK5E6b8922arDPDYDy4RMdJmWPscMGDsBJInWqgp8nU6suPs8HzFOBJfK4//ZzO7udYvmjsxGavxchd1uelNvwi5AQbCZH9e2ss0XpMCo59fF2di1R6Zmj96kZdycQkadmseulc1s+qQOrzPE6neq2LiglpEz8xh1Wj5mu/6LTyYIwiE77ivs3nHHHbjd7p6v+vr6Y90k4RiKx0PUN7x4SPklcaW3B6RPzss+PS9u90bWrjufHTt/xtp159PhXHLA83V2fkYgUIFOl0xR4S19ntNoDBQW3ghAbe0zfQKnw0LWwHeeh8FnJaYUv3I5VB24rV+HqqiEKl10zt9D831rcL1dkQhcZDAOTSH1mmFk3zEJx9nF/QIXAIsjmeySQUB374uubxE4XVKQukF2XqT33+fcUTn7LA9wgJyX7tGaolAjAAudHp5r7ODUtbtZ5/Yfltd+IFq9hpEz87jqD1OY9d2hAERCcTYsqOU/v13J5oV1R/T6gvBtc0R7XtLS0tBoNLS29u1+b21tPWzJuAaDQeTGCACEQk1s3XYzXu92tFo7U6d8gl5/4DV0lO7hG1k29JnyujfnxelcSlvbB4CKJGmIx/1s3fpDBg/+I7k5l/U7n9eXyNtITZmBTtd/9eTs7O9QXfMk4XAzzc1vkZt7+dd5uf1p9fCdF+C1a6HsQ5h3OVw5H4pnHJbTx1whAhva8G9oJd4Z6r1shgnLhCzMYzPQ2A6th6F4/CSaK/ZQuXEto06e2uc5qXU7z9rLiJMIatKQGNoU3Gd5gANMlY4khmkyI53ckGmhIa5lg8dPYzjK9Zv38L9haRRJ4cQwVcgFITcEuxJTsIeeAynFX+Fd6UujkbE6+v49ikUVdixrYszsgq99fkEQEo5o8KLX6xk/fjyLFi3iggsuAEBRFBYtWsStt956JC8tfIvEYl5aW9+nsupRotHO7m0eKiofYdjQBw54XE+yrtz3ZqPv7nnZm3Sbnn4mgwfdRUXlQ7S0vM3u3b8hHGqmsPCmPoGP318BgMVSut/rJXpffkh5+b3U1D5NdvbFyPJhXgRQq4dLX4D510D5RzDvMrjqNRhwypc6TcwVRglE0aWbCe7swL++lXCFC1RQ41EUdzm22dOxTMlDn2/70vVOSsZPYsX8/ySq7UoGdJYM8LeBJIOqUOxczGLOBmAWOnzv78ZhTAzj9fTAdNPrE3/GIv7eYas/vjsL7NkoITcRfydGJQyLD9KgykVw7btf6jUciCT3fy8GjP4KC1EKgnBAR7xI3e233851113HhAkTmDRpEo8//jh+v5/rr78egGuvvZbc3Fzuvz+RKxCJRNi5c2fPz42NjWzevBmr1crAgQOPdHOF44jHs5X6+udpa/8IRUnc0GzW4RQU3sCOHT+lufl1cnMuJylpzH6PV7oTdj8fvFitQ9DpUojFPKhqjPb2BaSknMSwoQ9jNOZSU/M3qmueoKXlXSRZT17eVWRnXbhP8HLg39PcnMupqXmKUKieltZ3ycm+5DC8E5+jNcBl/4H5V0P5x/DypXDV6zBg+iEdroRitP55A2q4/6wZfZEN73/vJlK1B/OICIaCH3+lJqYVFGFLTcfrbKdu+1ZKCibDrveImjPQ+Vs4Q7OBf8XPxo6PG0oqyWt8sOdYtWEtUt743jaZE1OkozEFVQVJAsJuaHcjA3v7aRQkwnobJrMDjA4wJkHrDgh2QsdXrMOjquBrA1ctdNWCt5lUX4hxllo6okXURRLtHHZyzlc7vyAI+3XEg5fLLruM9vZ27rzzTlpaWhgzZgwLFizoSeKtq6tD3qcSZlNTE2PHju15/Mgjj/DII48wY8YMlixZcqSbKxwHolE3lZUP09j0KpAoEGY2DyQn5xLycq9BozHS6fyM5pa32FN2FxMnvI0k9U/vOlDPi05n5+STlqMoMZZ+NgqAPXt+T0fHQoYNfRhViVJb9wzBUCKPoazsHiorH+3pqbFYSlGUKP5AJV7vdny+Pei0SdjsI0iyj6aw4AdUVD5IRcVDpKXOPOjQ1lemNcCl3QFMxScwrzuAKTr5Cw+NtgX6BC4ahwHz+Ews4zPpfOFpIlV7AFCjX70QnCRJFI+fxJaP36dq41pKIong4Xn1XG7gWSZKu3lW9zCnyNswNPadtePbY8U6Se3p4dCZenNgoqqMXlKgYCrMvCMRoJgc7IobebEjzD2D8mHfyrsf/w5WPgFZow7YVu+ni/G8/z7hsjKMo0aSfe+9SK5aWPMP2PxyYghqH0Zgandh5jrdHEIz/iQWdxSEw+yoLA9w6623HnCY6PMBSVFREaoqKlYK+9fW9hG79/yuZ3goK/N88vKvw24b1WfoomTgr2hr/xivdztdrjWkJE/td67enJf+eRqRiJM9ZX1nsTmdS1m2fNJ+ZxztDVwANm68gmisa79JuZKkIzvrQnS6ZKJRJ7t2/4ZRI585MmXmdUa47CWYfxVULISXvwNXvQFFJx30MG1Kb06J4/wSLJOzkWQJz8cf43zmGQBSb7yR4KZNuN9/n6Szz/5KzSvpDl5aNi+D9N2oSJg8lcS0MlpJ4XRN3wUzFWspTc7HYJdE5LU9pHxnEJJGRqs3IEkyqqoQGX8z+k1PQtbIPrk+Q4H79xcjbn098X3ctfttY6y9nYbbboNoFFCRXduJP7MZbetKUPcWpZPAngvJhYnvGj3VG+oplJdREP0INlXBkFchTfQcC8LhItY2Eo4bTU2vs2v3HYCK2TyQIYP/QHLy5P3ua9CnkZFxJs3Nb9DRvrBP8BKNduH2bKGh/gUAAoEqyiseIBisAySczsU9vTL7EwgcvBBcOLI3QV0mKWkcBkMGPt9ugsEGVDVCU/NrPft2dCyiqWn+4U/e3UtnhMtehlevgMpPEwHM1W9A4bQDHqKx6rFMykI2aTENS0WSJcIVFTT/+g4ArKeeiuv114l3dhJYuxbbzJnIFguqGicS7SIS6cDvK8NoyiXJPu6AgVn+sJHoDAZSI4n3U0Llau2nPc/XKem8Hp/Bz3VvgKxDvm4eKU3JdM7fQ3BzO85wnNQrhyLpZHRGI5FggKi5eyJAV80hvj/dvTb+9v0+3fX66xCPkDrFgT25GmNSCFqWJ54sOQ2m/AgGzEjkGu1ja80mNlWu4Nycv6JzlsO/z4Sr34LsA/fwCIJw6ETwIhwXmpvfZNfuXwOQm3MFgwbdud8ek32lp82iufkN2jsWUlr6OyKRNnbsuJ0u1+p++9bVPXvA86SkTKezc9lXaLWC273+C/cqK7+X5OSpmM2FX+Eah0BnhMvnwStXQNVieOkSuPpNKOzfG7VX8kW9Scdxr5eGW25FCQQwT5mCbsZMfIt7s199m9fQlrWR2tqn+p1n3Nh5/QPMiB92v4928zwKda0UWFwAVPmS2akZyZgJE8jb8RiZUhfna7uLWU69BdIHYU4HyaDB+dJOQrs6cf57NSknedDLUSJAxNhdU+pQg5eJ308MHa1+CsZcCZreBOq4z49r/msY7DEyihIzyZQYxEvOQXf27yBj6IHfv0wz23YPY3PJS0xs/wm074K3b4QfHZ7inILwbSeCF+G40NT8BgAZ6XMZPPiPhzTMkpJyMrJsIBRqoKNjIaqq7Ddw+SJfLXA5dIoSpKLyAUaN7H/zP2x0Jrjild76Ly93BzAFUw56mKooNP3y/4jU1qLNySb3sUf5cFM9xUjI3flGu967Ed8Z+yTL7sNmG574QVGgdjlseRV2vguRxDBbsS2DAkuiSN3Gzlxq/Sp7atZyfbGJFEOQcESCfWNUTzOm2Eqyhi9B3b0MbWMN0usquuh4wExU2z1Fvas2cc0vWll67DU4P3uQcm8Vk/59FqHiH+PbUkVw3XJ07g3YbHE8sQLUYdOJm/PxtmeRfP2PUFUVj9uNy+UiNzcXrbbvn1JHViLHJdDaBv7EUgfkTThoUyJ1ddTfdDPxzk5KV60UK1YLwkGI4EU4LqSnzcblWksgUIWqRvsUlTsQjcZMdtZFNDa9wvYdP2H48MfR6zOIHGDBRVnWk5l5PsUDfkJl1aO0tLxz2NpvNOah16fi8WzZ7/Pt7R/T1bWa5OSDBxNfi84El3cHMNVL4aWLE0MZBfsfegPoePLv+JYsQdLryfvrE2hsNnL+fFNP4OL8cZTwYJVAwM6G9ecDcMqMVsaPu4GkpHGJWTxbXoWt88G9TwFJRyGMvgLVlYx9y6+IKRLOjMmkqCotLW1U+lJJMTQgB8N85ipi2upn0e54OzGrh+4/XN339qiSjVZjBRQishlkbaLSsLcZknJ7LvnL3TWsaq/iF9khLhh4Fko4THBrGRdnZOLURHiqZStTKq7D2KYnrTiMrFWJR7VYZt2NdNpstEDyPu/Nk08+SSQS4ZZbbiE9Pb3P+5aUbsYgeRnrvANwQ94kmPvwQf95Ahs2EqmqAsC/fAXW6V+cXC0I31YieBEOm0ikE5drHaFwEzqtHZ0uBZ3O0f2VglZr2++sn0ORlXUhVdV/xeffw56yexgy+N5D+mQ6aNBdRKJO2ts/Zvv2n6LRGPvt43BMJjvrAkLhVjqdS1mx8tCmFJtMhQSDtYe0byjUQCjUcNB9Nm66ivHjX8ORNP6g+30tenNi6YBXLoPqzxIBzDVvQf6kfru63nyTtr8/SVkeTLnlt5hGDKfsD98l2BxCr4HgqXHCg1SQwe3qXQKkapuV0ywbYMsvoXGfYTODHYZfCKOvgIIpxFWofPj7jAKagnamnjKBh1pLWC51sDs+iBd4jGJrJx81D8IZNnNe3i40sgyZIxI5OwVTiRhG0fFqG5L6IlBHyBuHpHzoqk587RO8bG1cjbEKYu/+k9r21whu3kw4Fsb5f4k/g2sxcbIxhL0gMe1eTRqAZvzV2Kb0H16TJAmHw0FbWxsul6tf8GKxwZmOh7DTSJs9m/+OPYdZgWYGJB14eQn72WfRfEcir0hjt33hP6UgfJuJ4EX4ysLhdlyuNXS51uJyrcXv/6JaGfI+wUxy99fnf3bsE/Qko9MmIcs69PoURgz/M1u2/pCmpldRlSglA/8PQ/c0Y0UJ43JtwNn5Ga2t7xEOtySuKJtQlERlVlWNEIv1nwHkcq3B5TrYas8yZnMRgUBVn62HGrh8GRs2XMrUKQsPuobS16Y3wxXzE9Ona5bBfy6Ca96G/Ik9uwQqK3j95d/zxg0amlIlBnc+zd9bctnUsZuGgYmA4LQlVehWpGB+8kl2dnzAYMoYzU4Gd1bCB90zBiUNDJwFoy9PLF2g653W/MKKak7zLwMZ6vwOOlZ8jCv3+wB8phmHW5tKEk7yrR6qvKl8YrqBM3/6ezD2Vi/WA+k3ZqH7jRFC4FxQhjK0ALmrGrWjkpDLin/NWlzLP+DBLZUYuqvwBkgsIVA10gEkhrAyT7odNehEioVh1HeQcsb1HwfbR3Jyck/wsq/Qnj3o//NdHshr5SNrd1Xd7f+kMtDC/dPvP+D5ZL0efWEhkdpa1MiRXVhSEI53IngRvrKt227sNwxisZRisZQSi3mJRru6v1zE435AIRrt7JnmfKi0Whs6bSK42VvXpbnlTZpb3iQz4xzi8QCdXat6gpR97W/blzFw4K/JyjwPVY0fco/M19Xe/gmFhT88shfRmxNLB8y7LBHAvHQRH530Cr9Y5Oe66SEW7bybhvMTixlm6xRKkxrZtvNa3Lr8nlN8OnwAszL2UPruHCaY+tZ8cZnS8BRdQmfuLIZMOAWjsW+PV02Hn0c+2sn1cmIIr9bvoMPrwd6ds6wiU5c+k5HNb5JXkkztFokdm3YxorqOvKEj+pxLl27GMjgD1pURbm/AF+vE7gDno3fRvqk3WDIAXVY7wRF5jJtzCebJk/nU/SFsfRqA1NxBSAPOPOBbpqpqn94+h8OReK0uF6qqEli7Dudz/8LQ8gG+SQE+svYtTJdhzjjgufeSut8nRQQvgnBQIngRvrLk5KkoSpRkxyQcyZNwJE1Er0/Z776KEiYadXV/dRHpDmxi3dsi0c59nk/8HIslEjljMS+xmLenKNy+Wtv+1/OzXp9GJNJxWF9jwF+F07mU8oo/9dlePOCnVFU/flivtVdF5YNkZV3Qs8bSEaO3JAKYl7/D85UW7v7Ajda6g+fr5yElxbEEVW70RygYmyhY17w2DW+DtedwgxxjTGo7qgpRRUYnJ+qefMgI3lOHk77LiLRrJfrPPmHkqIUkJWkJtRaQXGjm7mWzKYl5kAyJIrWBmI5YLEJh+0JWkhjCas8ohGYYFNlCx8nfY/ey9Sx+4Vmuvv9xJElCVRTCZWUE1qxB2bqBQksXwcqFBN2N2MeAzhhCTspCGplJZ/ZOXhh0Be9mn8dV9m3UmUNcmp/J8p2Jac93Tr2TM78gcGn82e2YRo4k5dprkHQ6HA4HkqKgLF9OzT+eJbRtG7JOIe8CD4Z43+HR5aOfRzt8yBf+k0j6RC7XgXpegr4I9Ts7qd3uRNZIzLpu2BeeUxBORCJ4Eb6ykuJfMLDkl4e0rywbMBgyMRgyv3jnbooSIxZz9wQ8vd+7CIYaaGx8GQC7fTRDBt+L1TqEtrYP2b7jJ1/p9UiSDlXt24PQ1PxaT10WnS6VaNQJgNGYwynTN9Hc/Hq/wOZwWL4ikWcxbepSTKa8w37+vWIaE39Iuo8XY01o7Rsx5ryBJCkMrTLwq3f8BK9XCANNqzNo25La51itrNAYsLGyvYj6QBJXFm0my+RjLts5xbeTDcoA6vUj0EbiVOyZzMC8ZWz40Me6EY1UxHK5QZuordLl0JKf5GKH08T0pg/Zk+xgozqIBj7Go5pJxk1q2vPI2mG0VVey5LcnkVavEC0PUW224rSaKLB0cX5xOf4MPZ7qwcA2TEU5FD31X1avPYNYNM73d3zAlS2v8KMMIwuAf2//N13hLvSynum5B+9VC6xahXfBArwLFuB+910yf/MbHKtWMfeDD7H5fIQAyWAg48JhyLyPI7mEm1p+x9bgRobHGmh65HoKn/83jD94PpOkS0zVViO9v4fu9gBVmzuo3tJOS6WbvTU8tXqZGVcORqvTfJl/ckE4IYjgRfjKjvRUTlnWotenotcnbpqKEiUW86LTJSNJEhqNmbq6ZzGZCrDZEp9A09PPoKTk/6isfOhLX+/zgUv/53vL1NfUPk1GxlkUFHyfnJxLWfrZmC99vUPR5VqNyXQE1j8CvKEot87bxNKydvTJqzBkJRYmjLrGk789GXN4AQFN4k4ZaO+f6OyPGXi1dkzP441kMs4WJcsbxqJVOIVKoBKATdFi1q7O4KPJrfjMcfS8zwXNQQhBe5qBqDUCC6Hem8S8jPu4PXYzkvlkPlXsXKBZSfGqOOXuAG0WK841GsxOP5sH5KKxZOCPduEz+QGwGCNoRu6EGEiaOpatTASBjs4oqZ5qzs3vHcrpCncB8PMJPyfLcvBV7s1TppB93320Pfww4bIy6r77XQBsQMRgIOf73yf5qivRLvk1bAMGz6WwbABU2xmj3QzRVTT8+CcMeP01dLm5+72GqqoETDJdFuhqa6Xl7SV4toO/UemzX2qulcIRKRQMT0XWfLUEeEE43ongRTjmQuEWduy4HYM+nfT003E4JqMoEVyuNbg9m/B6dxAM1vfkykiSHqulFK9vBwCtre8RCbcTDDUQDjejqv0XFDwUNtsITKYCQMLlWksk0rfq6t5hLEhU5a2oeJDBg+9Gq7UxedIHrFl7Vr9zajRWJElGkjSAjF6fgtlcgsVSQmPjKz2vqajwZlzuDbhcawHQau2YjPlkpB94KOPr2N7o5ry/LUdRVcwZS9GkLgBg1M4UVkgXszK7k2s7PiQyNFEF35EuEUs3oLa4CLea9ntOd9xAlnf/lYnVTSF8WPCN6R3WK+5+7cahVzHAoKViyTZ8MQOeiJ6/G//KZ2+P49WUk7lAsxKH1k9h0Iw5cwQpqdmYDNmcbcgGwGWvRFUfhe7Y0xhL/PvrYlE0MYW4VmZxQMe8vOyea59hj2JIuwAbFi4fdNkXvl+SLOO4+CKsp51K2yOP4H7zLbS5uazJzKS6eAC/uulGtBo5sRAmwOCzMLcmhoDiU6exp2UJmZV1aG+5laJ5LyOb+651FPJH+fnCX/LZKZvhFC0oD4EH5DwNufZBjNVNZs6g2YwdNxhbSv9AUhC+bUTwIhxzPu+untk+++awHIiqRnoCl70OVnwuOXkqeblXYzTlYTLms3btOYTCTX32SUqawNgxz6PRmLqvoeDz7aLDuYSO9oV4vFt79tVqHcRiLhoa/0Na2qmkps7AYillf1JTZ1A68NcYjf1XFU6yj2XrthvR6zPIzv4OeXnXsnPnL8jMPJecnO984fvwdfz6ra0oqoo952PUpES13EuWK1zclsxFg+I0W9PYcXoWtkgX81d9j6p4Om2Kle8EnyeN3nwMrSbOrMJyPqoagsdjht6UGKp9yTTX2UneHmH9wDwwQWm9lvL8GBdphiHH68CaRYpnLtIHb5HmDdBmMvOGexI3GrYyMd2ALmZGUXXobVEGTbqCYrWo32spOvUMQlveh5benKiAqscsRTCFFFZrdLyAoacuDMBptjjytlR2Ll3K+s63mXT+ofVuaZOTybnvPjJ+/nPW7txJxcKFQCJpN6N9RWKRRlMK5E/CbK9BiTaw7r+vgQZ8+Zk4du+m86WXSfn+96nd0Unjni4ay7roaPBRO6gVulPGtHEdOllPUPZT79hFPbt4r/EFJiuTeXTmo0TiEeJKnEzLoQ/DCsKJRAQvwjFnt4/8ysfKsp6iwh9hNOVjMuZhMuWj16cTiXaybdstuN3r6epaTWrqTDIyEr0YZvMAQuEmBg26i8rKh4nHA7jd6wkEqnoqwkqSjM02HJttOAOKbkFVVRoa/0N5+X3EYq6e6+/c9StGj/oHkqTrkxOzV1vb+7S1fUh6+mzycq8mOXlaz3BbWtqpTJ2yEL0+DY0m8Ul87NgXv/J7cajCsTjbGz3oklf3BC7nrVK4YncK9rmTmLB7NytzRvLn+HcJL7PiURMBnS3qIc3TN5E0FtcghxKvx+82omSDLEFDwM5b9SNAgoGTOvAGDejlGE95Gln+iZ2TIsthGLS7u6h99WfYd5UwPGcypRkDcRjzaA4n3o98IKwswqRZh1m3mlDOKPR5NvT5NvR5VuLeCPpCO/7yvnVWoiTyQEyhOJ/G+/6Zs1lKOWXyffzj2US+1rJ5zx9y8LKXNiWFnLw8ZBTyacL4zg9Qmz5LxEfDL2TLoo9Z+erTqEpvL+CAqedA2d/xfvIJqT/4AYte2EnY3zsUeY7vGp633Y1fF2SuPIw/ffclqt3VfFr3KZ/WfcrWjq2sbl7N9vbt3LjwRgDWXrUWk3b/PWGCcCITwYtwzOn1aUya9D4tzW8Ri/tQ4iEUNYos6dFoLd1DKLmYTAUYjXkYjdlfuK6RQZ/GuLH/YU/ZPTQ1vYos9a5ZkxjCgbJ9Vo1OTz8Dq/XAMzckSSI/71pstuFs3/bjnsUXI5F21q2/cL/HDB36IM3Nb+FyraG9/WPa2z/GbC4mN/dKsrMuRqezdw9THV11zgBmQlwV202+s4tnHHYWTNCQdtZJnPbwe5xkGMDKnJG0BxMBgYEow7WtDIxW7fd8HzYNBkBFwhczYNeFiau9uRgVwUQtnpmZVWSY4kzW5pGUXQf4kPxXkpVyMZwE+w6kxFHpwEOBvAaZRD6LNuldWk+W0etSkbV2Vq9ewdbWFCo8E8hvSOKv+/T6mLp7h4zBOG2fWyLAkTQJm63vukTOhnpS8/L5MvJo5U7+knjQ3ZHnKz4XX8m1LLz7dz37SdpctPqRDP/ORTS/+BRqKIQaDjF4chaxqELeoGRSCoykZiaR+4c3+W3BGt6TtjC18j3OLTmX7w7/HvGumWyovAtJE2BRWW+l4gZvA6XJ++/1E4QTmQhehG8Em3UIttLfHNZzyrKeIYPvJTPjbJL3WVU6Lf10nJ2f9Tw26DMZOuRPh5SA7Egaz8RJ/2X79p/0KWwnywaSHZNJS5vFnrK7AJnU1JnkZF+Cz19OY8PLNLe8nVjBuvxeYjEfxQN+fFhf7yHxtiB/+iirDC+RFA1AFE7zBPl+XgbPdb3PC9erFLr2YJDeJR7KQR83cpK2ng5zE4vNDVzecPBhCm80Ebzkmd0Y5SghJRE0Fo3oJC3waxrDRUhZEYyGKwDoGAAByytEtc1ovCqdjek0N0Jh5mbGpVYTj2swRBIVb81eL+s/K+e9UBa7O/MIxL7Xc930lgrumpiKVyfxYFsHeinR4+EKS/gMff9drfaJxONx4snpaLoSeU3vPnIvF/zfnTiyMpHlA/9ZbGhoIDc3F0mS0KYV93v+mfdd8H5v4KKzzMWUNILZV5eilUOEP1jAkKJ8JEli+qWDAFi2bBkvP7WIvLw8zo7mcEN1jK7xKg+tuQcLBTzxkY9NdS4g8Z694NrG3globYE2Ebx8yymRCNGGRiK1Nejz8zEMHHism3RUiOBFOKFJkkRKyrQ+23JzrkCJhyivuA9ZNjFs+KPodMkHOEN/Bn0aY8e8SGXVw9TV/RMAu30MQ4c9jEGfRkbGmUQinT3Vf62WUgYPvpuSkl/Q0vIujU2vkptz6eF7kYeqZgXqSxdREguBBC0RB6kxD3nmGP/tCHCb3sSKVB1VqRH09K5+fKBsoqQ0De6O3mERgxzFrksEGhpJZXxqI2uceRgHxkma1kpkaRJyREs0+y9IXQp+k4bG4e/1OadmKGSFZELNOoJBidSuvgnAV7SuZ2F0JgHFglETYnByBSMclUzYupY7HRYALglYKN6tIWuch0q/JlGdrltMlwv6XHw+HwT9Pdu7mht54093MOC89ZQOupWioh/1PBeIBlhdv5rNa8rp3N3CpRdfyKhRo8CaTpuUToaaCIDaQpY+bXXkXEgoOIBoOE74tiv4/gVXsHT8FH6saPltSSIHSlEUFi1aBEBjYx2hZA/DxiQyj7WShx9/ejv++lvY90XIhtaen5v9zQf41xGON9HGRrxLl2I9+WT0BQfukY11ddH+l78QrasjUltHtLk5sQgpkHrzTWTcdtvRavIxJYIX4VtHkiQKCr5Hfv53icV86HT2Lz7oc2RZS+nAO7Dbx7Br169wudawbu15jBz5N5KSxqHvDlz2pdVaycu7iry8qw7Hy/hyVBU+/i1SLMSeaB6Pqt9hzNo9nO7cQP4pTozJLp70uvnXhik8NPwUNMY6ZEMbGjmEZKoHCUJN5wObe07pyA0wmAtZ2/EBABNTG7DpenNivAUdNA8NkBaPY19nwG54mNaB7VhCPuiCLruWtI4YmkARprCfoLWFthQDWqMCA8Jsx46qSNhccQbXenB4YxilKC/qH2B5XiGhwgC64FgKNg9nNb1B1JZkO7aQniw87N5nuBAgbBqPoaWFx999FUs4UX05UDAYU10Zrg4nOzfaKIv9mSSvTFs4wEu7XiKq9E6h94b/xPC6DkaNArWjArvRBN1FnBVVQpUkJFWlZNIsBszewqpniwmi8tCZl7B0fGLRzSfq2rg5VWX7tg8oK1vEoEFOLNYuLBYPVVLv65hsifOKvo3cgf9jsvUnvLUpsaSBbOgNWNY0r+GSQUdmKr3w5TQ0NLBw4ULa2tpQFAWLxYLT6WTUqFGcfvrp2Gx916tS43GCW7fiW7IU3+LFhMvKAFB+fjtpN9xwwOvIej2uV+f33WY2oyssRNtd9fnbQAQvwreWJMlfKXDZV2bGXKyWQWzd9iMCgQo2bLyS0tLfkJd7zRGvg/OllH8CTZuIq1qujP+WLsXKD1r/SyyqofbTNPKmd2LJiJBSpCXmGU3MM5oiZF7qnj600rqZdfLGPqes3WJgYtFQtnQuIawEWN4+AK2sMD4lkQByeiDI6YHe5RlcdieNeQ6mrI/yq/RU1ujtPL7tDhzRHOLuGjSL7yNNllg1Kxt7sZeWwhh+rZ9Mi0R0iI2T13WhAg05BsZ31lPTmsSmZW2k122naqrM3ulEMVOQph8/yMgN17LF0jd4iRlKUVrXUWeuI1rixmeK4kpZT6DYTcAUR5WAdiO0P7nft1Gftphl7qs46eMFZK+4FqMURlHhv57JVJqH4hvswC4FSZn4Nh3tjTQnncrrU3PptPQtgvfsxl8wgbUM+NwSVmpUh6RLBEtr24eCWo9Hu473qt8EpnDakAyabR4aEssxsaBmAQ9MfwCNLArVHUmhUAhVVTGZDpwc3dbWRk1NTZ9jALZu3crQoUMZOnQoca8X/4oV+BYvwffZZ8S7unpPIMuYxo1Fl91/ZuK+ZIuF9J/+FG1mJvrCAvQFBWhSU79Zf2+OAhG8CMLXZLGUMHHCW+za/Wva2j6grOwePO7NDBlyb88somNKVWHpAwBsc5yFszWJSdkGRrzwL2qvvBIlKlO9J5MRGfXM0G4lV+tigu5tdknjwXsyANN8Y5iijuQNHkXtXl8KoC1YxyD7ALa5ElPXl7SWEI5rmZpW129Nw7BeRh+Oow3G+TjDTEyK84l9CxeFVGpKFtIVkxi+DJJ3RtkSTOb9pGbimsRwyekGiVEWDXZ/HL9VS8VAK6ZgnLFJVcQ/NtKSrGNv8LLLoKPAuJVnkpKo1PdN7E5qf5StEpDZ/fU5mrhEMpCblEKwJY1I0EFDLJNI+mJkrRc1ZsW+tYOGwL0UpCaGtCrVAoJJmXhxABIxS5iWzjhL5at4a1Yh6n5WUu8klWDQit+fjN+fwpBxl/LkagOFHy7mgoIFeC+IY5Ig1HYmxswPMGb9j1/OnM3V44cz7ZW+0/xbA63kWA9+wxO+ni1btvDRRx9RWFhIXl4eWVlZ5OfnY7PZEktVqCqrV+9/gHXUwIGkr1lD7UMPEVi3HjUWw2O3IysKSTYb1unTsZ46E8vJJ6NNPrTh67SbbjyMr+74JIIXQTgMtFoLI4b/lfqkcVRU3E9L67t4fbsYNfLvR3aF6ENRuQgaN4DWxDPmKwGFMyYU4/v0LQCikobfFf+Aeer9pEtu8mzzqbXv4bbW4T2nUDWrMSgOTsu+gkXN83q2f9b6Oufl38IO1w4UQIOGVR2FhBUtMzOqkCTwSRK1ylgCzRdhT3uKcp2fWHdk8276RwzLeQ2jViW5BJbNlVH+G+KzMX7iGsjsUmlNlvgkbMBoTuJ7ES/a2hjVdgmnqqcjV8J5jcy6QG+AsMxsYlnTa5CS1O+tUJHQKTqsUTMZ4TCWFj3WgJaBIzrxL8nFFJGRZZXCa9p52nMR5e4SAPTuKYyLKoztrEfjf4LKNDsTVC16KUapXEcpdZQlpbPWMYDtoYm8bfol1foiAArD9TTps4hKOmwxH9+NVHDF0JtZtmwilVXVMPR0HnjNQySuUJ4/kQZtCtfxH4aklJFbcyNpti72eFfxVuP95GfeRvxzRRjTTP2HKIXDq6WlBUVRqK6uprq6ume7rnuNq2AwiM/nQ5ZlbrnxRiivoHXZMjTLlqG8Op9dqam0ZWbQMW0qzowMIlotsiRxzVVXkfstSbA93CRVVdUv3u344fF4SEpKwu12Y7d/vSEBQfgqulzr2L79x0Qi7Wg0VoYPe4T09NOPXYMW/wmWPoiqMfC78DW8HDuVRT85ifhFZ+H2h7h78vfYkVbMPw2PM1ta23NYRBlAR+QeknVPYdIkEnj/2zicck/fxTdtuhSSdOk0BPZQYBnKQPtYWoO1xLQ7WVgS5xT/JE4L1QIynpQGVrKc+9J6z2GSZc5OCjHVEkMjwRtOPcsDWkwhDX98WaE8O8Y/5sqoX6JbPE9SaFD79njMsFr5QP9zLJ2JKfLDvWYmLktMB8+d1kLb1hSivkRPTd35Qd7dfjNaRccMXQeTdLXI3i1EY0EsQyXq28YhxWRKNJWMMW9ksLeVOBr+MuRm/px+ITFZS1qkk2muzXyYOoOoRkMRcV4aU8LAZAcAO5vc3PbyOsqdn69KrPLA9D+Rbmpl8JC/Yk+bzmXvXUaDrwGDxkA43nf/rddu/dYNGRwLTqeTJ5544oDPayWJCcEgAz5djOLxAKACW8eMYfeQwX323dtbYzab+eEPf9izQvm33Ze5f4vgRRCOgHC4jW3bf4zbvR6AwsKbKSn+WU+NmaMq0Alv/iDRAwMs1Z7E2Ak3sfNX9/HD027HY7ACKveWlnN1/d2JQySZcr2WSp2VkDXGkHQImDW0rkynpuzg06XPy/8RJm1vcqJF8wHJur/3PP59Wgrv2KxoVJW4JDHaFMMdmYTH5+eKgm2Y5DjP1VoZvzUVR3qQ9NYAg9PbeCvbzEqjkbgEaV4Vi6IlNyPEiLYgmdo420nnTWuiV+IXmUHedumpDCfeb6OicvOSGFqnxPYiGUmFMZUqTUmJ6c6SRsFUECdQnciRWX1RFVUBExenepls7b/cRFntMJo8kLY1iiMvxtDTTuVuVxEb7Yneqrkdy0iPdPJizvkAjHTGeeeCMVi0GqJxhaeXVPLXT8uJxhU0ljKUcAZqLBmbUctNM0o4KfUJnB3/o3Tgbyko+B67nLu4+oOriSiJhOhZBbNYVJf491x/9XoMGkO/NgqHn8fj4bHHHut5fEFaGoEtW4juKSO1owNN96wfTXIylhkz2Fw8gHVNiWG+oUOHUlhYSEFBASkpKTz//PO0tLSQlZXF9773PfT6g9eu+jb4MvdvMWwkCEeAwZDBuLEvUVH5EPX1z1Fb+xQezxZGDH+8Z6HJo8acAle9wTtP3cHZbc8yI7aCzz4azrap93NdOMA/9VGCko7flZcyT/oTSZKfX655gfWnjmKPppOTLGXoolFGb/Vgkd0sTrWy2Wk54OW2uJaTVnQ2RX4FrQqK2ls9LqzkUdOdkHqh18cbdht7QhoytOsIGk2UGhMVZ2+OyTR2mFDicGpBGUMiUU5qCbBpYyqWSh1aRQIitP8ijpKsZ9xmD3UeB0xPVDgurQ9TrzP1LAlQaFL412wNHkXmB00RTlmpEh6l4FO9eOpsGJIiDJxdTdumNCK6OO1RiR9luSkyJD7bNYQ0OOJWTEYfAb+dilgjHzuiaKfKDPKdz52x2YTtBuwxL7+veoZljnE9gcvUXUHOro5huUTDrmYPv3xjC9sbPYCCIeu/6JNXowYHcG3RQ9x4SglJZh07dib+NKvds6iGpg7l15N/zR9W/QGAGXkzeoIXEbgcHUokgnPlqj7bNmzcyLTubYbBg7HOnIl15gxMo0axdft21r39NgBz585l8uTJfY69/PLL+cc//kFLSwtlZWWMGDGi57lwOExHRwdOp5O0tDRyckRO0+eJ4EUQjhBZ1jGo9Lck2Ueza/cddHWtZO268xg58u8k2Ucf1bZEVbiz/TT+Hcnh1bR/E3fv7ZEw8xtfE7kZS0iNb6BUasQshWE6jIs1QAyohObIYDYEZ1LuH4ovsAWoOOC1ar1b+eW4s4kZzDzw0r/JNcLMTFBUM+2Rp2jS3A6EOc8b4A27jZAqUahX+Y65d/VkR4GfRkDuMpGfBk69zF9iaWQbdcxUejuL0x/Rocoqe5KTKTs1MbNpSpeVbXvu40Kjj/8N/Tt+g5uqsEwUiXStwuBJMTq77yMDlAbcdRYM9iiyDA6Ti49jEj9NBptBRfJDyrNaNtk1/GVmBC12FDVKWK8Q16QST/s+S82J5S1O6VzPrZ/9hz9Ov5ltqUPQKVF+ueEFNFUXEQb+9tEeHlnc+77pU5ahT04keUqman45Z3DP8I9EYshLVXvfk0tKLyESjyBLcs+aRoOSB33p34VvKyUcJtbeAfEYajyOGotBPA6yBkmrQdJoQKtF0mqRzWZks5l4Vxe+zz7Dt2QJvhUriQeDJJ8+G5fDgT4SYYjVStZdd2KdMQPdPgFGOBzmk08+AWDGjBn9AhcAh8PBZZddRltbGykpKWzbto2amhoqKytxuVw9+5100kkieNkPEbwIwhGWmXkOFutgtm37EYFAFRs2XM6gQb8nN+eKo5arsK6mE08oRr1lGH923sgGfYzTumcxe+I5eJqvZKTZgdb6H8LoaFeT0EeioNfQyEBWdt6BqkYJuw885q+znEXUn6j58v35T/K37/4fEwrf4+PKIZySAbIUoHboXQS6b8ja0O+AZwFY5tdySW6A7C0/omXo8yQrbvIHtuGT9WzOSiZujzOnVYWJUTpmqqgWUMwqigW6l17ifKWDkpAGi38cMdVKctDKrPJreW/4k0SlxDUvT46g2+ctl2RwFPUWqzMVxjhPD+ggGtHTtEBPdlmEs1GxhBX+fk4YFYiaTyaUfDVhjQVTPMRv9vyDwsU13HrNPbTZHWhjPopbHiesLcRh0hIJxnh+YSX0jBrGsWetJrzPoH1XuIsUY3cu0N7hxX2CF0mSuGpookbQ8sblAGiOxTDkN9ze+imhXbuIVNcQqa4mUl1NtKkpMfPua9Cnp3NpkgPrzJlYpkzptzr4XsuXL8fn85GcnMz06b3T5Gtra1m5ciU+nw+fz4ff7ycWi+33HBaLhbS0NJEPcwAieBGEo8BqKWXihLfYuetXtLd/xJ49v8fj3sTgwX/oWcn6SFq4sw2AqSWp/GNrBCQYKSukKzJxKYJG1bMtcBarQ6ez2O5iV3d9lwJXI2PzGhjq8hINKge7BGp0MYo2AznWhink4dSNbTRn5jGuuAJvlZ4kIkQ7WrhnRJSoRqUl96/IjUYUJDK1Cqoco2l0IjfGp9eROstJKpColiERzVWBvjcfXxxebDMwzBRnpi3GOHOc+vax7A1HcrwDmVh/FmsL/sdUS5QS4xe8hn1Gw3T6CLpSmB+RuWyZwsxtKv+aY8OXeT1u60QAxnt28IsNf+WDQAl/uPF+oloD2mgz9vZH6FTa6DQOok5bjTa1A1tkAB0YOHtkNgMHbuS53V0kG5KRJInOUCfV9dsIv7SYaHMT0u2JGUSq2j/fBiAYS0Se8n6mYX8bxZxOfMuW4f9sGb4VK1Dc7v3uJxkMSDpdTy9L3Nm9kKosI1ssiR6ZaBSivYUJjSNGYD11JtaZMzEOG4aqqsRiMeLS3v6xvrq6uli5ciUAZ5xxBlpt4jbb2dnJiy++SDy+/3/TvLw8cnNzKSkpIT8//6A1ZQQRvAjCUaPV2hg54knq6v9JRcVDNLe8hde3i5EjnsRsLjwi11RVBVVVWbgrUVL+/a291VmbtArpEZkaQ5D1GoU5QT0ORcc5rnRKkspZLDtwOWxsCmVTPOI9dBsvQdYVoxxggcZYJEjBrCoaFmUDMGHdM7w98RecM+gXhD1AB+RkuKnXmbo7IFSK9ApVEQ1nJUX7nU/nU3F2WYmHNFjSouiSguy9V0tBMG6VWN+mo2yMhrKwBs8eOwN2ZKIzJxbYXJf3ARMbzmJc4+l02qo5N3ddn/PLtRIdTUkQl8go7iK2n575UR8rvDc10drPxkygo/AHhLRJ6JQot9f9m5mm//GDcZfTaL8cJBldYA/W5hcgriGu5vMO26FoN6qqQxes4ydjbkLW+vnHqs3E4jMYlDuLys5aQp5WHlrqxFYuEZELSFqRyZx8A9GYGyUSof3xv5D2wxvQdH8Kf23PawAMSz3wYqLHkhqJIB2hBFRVUVBDIZRwmHBZOXU/+EGfYANAttsxjx2LvrgYffEADAMGoB8wAE1KSk9vZ6S2lso5iZXmURQGrVqJ1B1oqJEIcb8fSaNB05042tbWxoP39C7mqtFoGDFiBOeee25PgAKwePFi4vE4AwYMYMiQIT3bt27d2hO4DB8+nB07dvRpcygUYuTIkeTl5R2md+rEJoKXE5CqqnijXux6Mdvqm0aSJAoLbsBmG8H27bfh8+1i3foLGD7sUdLSTjvs13O51rNx0xXcMVZHJK4jHDcQUXRE4nrCjaNRtl3AAEklc/w/McsxtNWTidVOZqi7lBEGD5njXsaen6is2+QcgFp7AYak53DXuPZ7PeeWZExpQYIdJlDDDNiynvLYDxmU9DgQQdsk09KchqJIZA7qxBxJVIdJrYowuPOXNAxdiD99K5KiEjFD/VvZRIM6xtS2khmLEZimEJgeJ54KwckqWzroKc+/MylKUawIVC0+fRcb8j7CFLUyovUUZlVeiW5gBZi7CDlN1CwcTGdjBmGtBu9IDUGvluguHWq9DqlBS0TWE9PIhLKNeNsMXPqrQtqLEkHZUF8lN+ycx989Z/PIkCuJZyZ6qTT1fuRdVoLqLft9b0LAXxftDfzmArCwHaAUKGVNF1AwIfF0OeSZh5CVvIWG+2/Gv3Iloa1bKfjPi2xs28jq5tVoJS3fH/n9r/qrcVgogQCud97Bv3Ilsl6P54MP++2jcThIvvJKJL0O//IVaLOyMJQUo4TC3UFICDUU7vmuhkP7PBdGDe/zXCiU6Bn5Ao4LLyDpggvQFxUh76cHQ1WUnkBFkST8FgtN77xD1gUXoNFqkfR6tHo9kUiErZs2sWTJEtyf682Jx+Ns2bKFQCDAlVdeiSRJOJ1Otm3bBsDpp5/eZ1h406ZNPT/vG7hoNBpUVaWzs7PfEgJHSiAawKz7BhTQ/BpE8HKC2dC6ge8u+C5aScvKK1di0oqux2+ilOSpTJr0X7ZvuxW3ZxNbtt5AUdGtFA/4yWGdTq0oiTu7XhNFr4liJdD7nKmd8p1nIQcdDIrosRdsgYwdBEuW0Lz+OiKeHJpW3Yy3Zgu5wz7EpI3jARzGwSj2ZXg9/T9ZBzuMnJxVzXIShfni4S1Ed57E8yP+wF38Apscx19mwesx074phQnIGIrdPDZYpVzzFJduvxNGqPjTtyEBGeM6aFyRTctIPZnLZeIbTChOLUkxD6FT4tTYe98rt05Bo0/U06hN3gESrCp6lxJvIVkZ9Wj0flaXTeW52kuJJ2tgbzHTKFC7z4vY54NvPNWAZoSFkNGErMa5qW4+SkWQ30jfIzIuDSXFAKqKdrcbTZ0fSYqCHNvnewy9akBWI4T1HpCiSHIMrawyu2gmVoOB/1W/Q0Txk2nJoL6utzBghqkDT2cz5lUaZLOFtFt+hCRJ/H1zYmjtwtILybXmftVfja/N/d57NP3y/75wv7jLRcff//6F+30dupwczFOmEFi/nmhdHZ0vvEjnCy8CdJfRL0RfWIg2Owt/WTkNe/bQajTSccp0OtLSiOr1sH07bNuGyWgkIyuLoUOH0tra2ifoAJg0aRITJ06ksrKSBQsWUF5ezj333ENJSQnhcBhVVSktLe2TZLt48eJ+wQ/AOeecw9ixY4lGo9TX15OU1L+w4uGkqip/WvMn5u+Zz0OnPMSZA848otc7kkTwcgJRVIUffPwDAGJqjEkvT2Ju0VwemvHQMW6ZsD9GQxbjxs2jvOJ+GhpepKbmb93Tqf/8pVa5Ppjk5Gn8q/xv7GnuQK+JoNdEMGginDRQ5tLaGCFHB3XOHBrWfo8drkyc2Z9Q6rVyvdlIdTRGRVCLt3k05a0jSNPUAaDvsnB2ip5XPfu/ZllXOgWWLur8idcQC63AsfMMqjInkylv4dqszbwZGUFLKNEzOLIqiQ2DXbxrhQ8H3EuBR8d5ZokCi0raMBdKVMaQFKVunIphsIfqj3NJWWMg518deG/r/WQbRYusLwWgPC1RXycux7gi6bc0legZtd7NzPD7ODywKjgUdVAErTWKToli265gaothiEfRKTGQ4V8XXUqoKI0oMCDQwM93/Yt/Os+gLStAdIgeRW/AqAbJcj6Dz7QZhsSRJBhaK7HNcBpJqWvw63w97fv859wpo/N4ZfcrSGl1GIDW+sT/XVmJ84umJRQam1F1CkqJnQH3/gvTmDGsa1nH2pa1aGUtN4w88OJ9R0Pnv5/f73Z9YSFKJIKhuJjA+vWo4c8X4UtIvvpqZKMByWBEMhqQ9343GpEMxp7nZKMByWgk1taG85//IrC2t5Ci47LLyLzj18hGI5DoUfEtXUrXvFcIbt2K4nYT6OykTpbpCAVp73TSmZKCMnlSn7ZoYjEUWUaVZYLhMLW1tdTW1vJ5p512GlOnTqWrq6tfL0llZWXPz+PHj+/z3M6dO/s8vummm0hKSurJa9FoNJSWlu73fTqc5u2ex6t7XgXg3jX3MjFrIqmmo1y64TARwcsJRJZkfjbuZzy8/uGebSad6Hn5JpNlPYMH3UWSfQy7dv+Wzs5lrF13PiNH/A27fdTXOveG2i7e29LEymoF6FsVt3ydwmDMTFN1BLRxOmJa8svOYTtd/LklcVMcZgCnoYmgEiHoyaVVSfSmNEaGM8O2EXD1nM+aqeBrTSSktIWtDDe29LleLPAJH7RdyCVZLpzJES4t3MYL1eNwRxK/n9/z6njRHiGigQpNhMecRuZ6YszJjpIxuhNJBjUmwc7BFC9uJ9vtY3P37NNUWcGpyBR2jUCS9HgMTlpsiRLul3q85Kp+AgEVt1lLRiTCLenvMTdrEdWlJmS3xMfb9fzvJC0pHpWnn4yzrWQwD117I/60RNLsdxvfZnbHR/ze9wMakguJDk0FnYwm4qW05SFmLo5QlZrOrpJWvBaVXQUqp6eMp6Ayn92xXewyqFjpoimpvM978uC6BwFIN6XTHmwn4k/kPd2y9W1OrVlNx3SVSCnY//A9TGPGAPDyrpcBuLj0YrKt2V/l16KPSCiIp70NiyMZo9X2pWa/Zd1zDx1/+xupN92IeezYA+6nqirBDRvQZmUj6XRUzJwJqopp1Ej0A4qRrRa06RlorP1rB8U9HryfLMTz/vv4V6+G7iJw1tmzSP/xjzEO/lzlWllGHT8eT3o6tbW11FVV0drRwecX2rIYDBQOGEB+Tg7yw49gragg5dpr6Vi0CK/PR9e4sZQVF+P2+foc9+mnn/Lpp59+4Xvz+byVK6+8klWrVrFnzx6SkpLIyMhAlo9usnWjr5FH1j0CgF1vxx1289C6h3jwlAePajsOFxG8nGCuHX4t1w6/FlVVaQ20oqgHn10hfDNkZZ2P1TqErdtuJhisZf2Gyxg8+G5ycy770ucKRAPcu/pe3tu9GlXbhXWQDlk1YdZa8QRAidn4VWE1Rb4ByFtvYYJZwxJvDIei4ZSai3gnazEXuE7libwPOWPYfFRFprPsdNq3XgKAgo63G1PYN3ixef346P0kusOdhUMXxBXdGzyrhP0f8W77Dwjm7KE1vJgN4yIUrjOgi8soy7O5YGoLCyx6wpowUU2UXZ2ljJUCZGTVoKogaVXk7D2kOLR0nhunfZQEXTpMGkBJDBUpY59jnVfXU5zut87Eqr1JnhjbRtoYtDFAvj9IcUsAk1/B+aaDj76nQVJVLv/MxENXX8mHJ50KQHa4jfv2/IWUrF34R0mk+TdRbRkLkozkiqDd5KMjcCHh6CcYGgu4b+V/+clNWpCgU9mGLZRDXjiPiq58Mqzb+gUvAEX2Im4Zewu/WPxrUBPVfQcGNhPWgq5WIlKqErS0AxCKhVjZlJjFcnHpxV/692Jf8VgMr7ODf/3kBz3bZI0Ws8OB1ZHMuLnnMXT6qQc9h2nkCPKfefoLryVJEuYJE3oeG4YMIbxrF03/96s++8mWRPCiRiLIViva7Cwi5RV9clws06eT/pOfYBqZKOimqiodHR3U1dVRV1dHbW1tnxop3Q3A6vWS3t5OWnsHGV4vlo4OJEBJScGlqjSUDqRl3Fja09No3b4Dr8VM7HOBy/7k5uYyaNAgUlNT8fv9fPjhh9jtdqxWa5/9kpOTOeuss5g7d27Pe3K0PbftOWJqjMlZk/nZ+J9x5QdX8kH1B5ycezLnlpx71NvzdYnlAQThGyQW87Jj5y/o6FgIQE72pQwadDeaL1FFdWHtQn625GcH3eeP2RGSVB0Dlj+INmqnM6aw3BdHBVYWvsOWlN1cZklhWk7vDJ2wJ4vqBX8EINT1WL9zNufmkd3Y0G+7y5aMKymVooYKkIwYUs4hMusJ3vKFmPtJAcZob95KODuPYFIKTdotnL4xxpDKJgKXhXBNVogqYNSAtvvvfl1E5rEWI4VdwzFFbezJWEOOPk5jNPGJdmowyD9a2nvOvWh6KhIwdoubZE+itkZNKIuf5VzKpoGziOmtxDSJz3NXNf+P71R9RHmGg6yBu5nHNXwonQeAwb8KY9V6Iq1zUOMWJClMgbaFkKSBwhcJaBPjaZKiRZX3X8Pj85SYBX/57wEF65DfIkkq48wxrk2NENXlceb0pXzW8Bm3LLqFTHMmn1zyyQFvgKqqEvR68Ha043V24Olox+tsT3zvaMPb0Y7P1XXQmiezvv8jxpxx1iG1/cvyfPwxzn/9C8XrQwkEULxeFL//gPsbSkuxn30W9rlz0eTl0dLSkuhV6Q5YAoFAn/0lSSIzM7OnFH9uejoRt5va//2PphUr8RgNeG02PHY7oYNMR5YUheSUFNIyMkhNTQytNDQ00NjYiNLdA3TNNddQUpJYvHPPnj288sorANx5551HvWflYDwRDzPnzySqRPn3nH8zIWsCf9v0N57Z+gxGjZH/nPUfhqQM+eITHel2iuUBBOH4pNXaGDXyKWpr/0Fl1aM0Nb+G17eDkSP+jsl0aFMo2wKJmi5FltFs3zIHSYqBHELSBDHlvYwkR6j0pTLG0cqy3MWcWnM+KVqZkSaVrUGFKbXnEtWF2eQv6BO8GOwt6CwdhD37TyjeX+AC4PB2sXTKHIo8DeAJEe76iNQ1V5CVNR9jVENIFyd1oBv/rhQMzQ0M27yNK1o6UXUqkSEqxFQ2ezS84jUwxBjnqsgQOnfPwR+RuTxqwxHKAGBY60m8NerRnut+1+Xt044BdQEy2yNYAr11NuLJWjR5RYRMDgAG+av5Q9kTvG2aweMp3+XqgY/xGL9ik5ToORjvf41a53tISaA1VeKv/CWqaqA2mhjyyaQ3oDjUwAVA0gSxFD+CqhjRqRpiUoy6SOLmJ0UaWP/+m7zmfQ+AodE8Vr3xCqoSR1EUlHickM+3T4DSTiyy/zyTfWl0Ouxp6eQPG8Wp199IwO0i4OrC5+oiveDITN0HsJ9xBvYzzuizLe7zE2trQ5IlJL2euMtFtKkJNSeHDqOR7XV11C5ZQkNDA9HPzTbSarXk5uaSlpaG1WrFZDLh9Xrp6OigsrKSzs7OnmCDEcP5PLPR2BOgpKWlkZqaSmpKCtZgEFNh3/chGo3i9XrZunUr69evp6Ojg9raWnw+Hxs3buzZ7w9/+AN2u51bb721Z82iUCiETqdDozn6hQVb/a1ElSgOg4MJWYnf5ZtH38x253ZWNK7gp4t/yvxz5pNkOLIJw4fTUQlennzySR5++GFaWloYPXo0TzzxBJMmTTrg/q+//jq///3vqampobS0lAcffJCzzjoynwIE4ZtGkmSKim7Cbh/J9h0/xevdwdp15zNi+GOkps74wuM7Q50AZBjzUaMpPWXd7jxnGA+sqcKQtpSacAZjaCVj4H9Z1jyF6eFMivQyO6UOYoEUptScy78tKm+Xz+XC0t7przpLG8GOA2TqHsSw8i1UnTyOMZ8sxRP10tmwnZGdiRL3+rifwd4OGsfFad2YTmVmMoGxChlntCF1dziFvImgwCipxEJ2gs5SZMCxzzUy/AXIiowiJ25UE0MhXsg+j+ua/wtAcW2QqFaiPtWKK5TBJ6kn85fCqwnLBozxMD+re5Fr697m/PC9VIwagt5WQSV/ol4qRKeGuYm/sTOwnjq0GMMyw6rj5Dc+j6ToqTPlsTJlCj5i/QqXmaNmRnSNwBQzoVf06BU9uriOjekbqbPWYYgZGNcxjnprPemhdAa0TMJS9xH/meHDHweLBl7d9DBr00NgBN2KelZ1zPvC99ziSMaWlo49NR1bWjq21HTsaYmf7WnpmOxJfXpv7N3bjwWN1YLGOgC/3099fT219fXU1dXRvHJlb+DxOUajEYvFgl6vp7W1db8JtntptVpSUlJ6g5N9AhWj0UgwGMTn8+H1evH5fJSVlycer1vXUw3X5/MRCoX6nPfDD/tPDd/L4/HwwgsvMHDgQCorK2lsbOTqq6/u6ak5mvYWNbToevOKNLKGB6c/yOX/u5wGXwMnv3oyJ+WexPdHfJ+JWROPehu/rCMevMyfP5/bb7+dp59+msmTJ/P4448zZ84c9uzZQ0ZGRr/9V65cyRVXXMH999/POeecw7x587jgggvYuHFjn4WrBOFEl5JyEpMmvsu27bfi8Wxh9567mDrlI2T54ENIc4rmUGAv4OmFvVMzC1LMeEMx1HhizkuDJpetHXpGpW5geEoFNGciSRKx9D10tBeQFsjlHF+calffW7HO4kRjPJmUlF20NXUd8msprdnFB9Ou4d78v/Jc9Smo8Q6s3R0j491eTEUq2RM60OgVmlZn0tyUSmSNTOGwFow7NARkKxRFCIRtWDJ3UTPqH+wOSyiSiiLFGdQ+kbL0tT2By6BwBJ/WxtXN/+vTjs3D7XiSdDzD1XwmzQJgSNNOHij/M1MoA2Ce/j6e9V7Mv9PPpV6ykaR28XMeoIQKHFaZDK2KZV0Oye1mEkVmgji8bjRSnNy6uWikg4/ES6qKXVa5wDOOV7WdtBl91Mvr+OGqgaSecQq6yWn8cfWbgERjVGaQRqFzsJtgQItB1TF79LnoZR2SrEHWaJBkGYPZjD0toydAsaamodXpDvnf51hQVRWXy9UnX6Wjo+OQjw+FQv2CiaSkpJ7gJDk5GaPRiMFgQJZl/H5/T4DS1tbWJyg5UNXb/dFoNNhsNqxWa8/X3sdms5lgMMjq1atpa2ujsbGRxsbGnmObmpqOafDy+dIZSYYkHj/1cb730ffwRDysaFxBq7+Vt89/+6i38cs64sHLY489xg033MD1118PwNNPP83777/Pc889x69//et++//lL3/hzDPP5Je//CUAf/zjH/nkk0/429/+xtNPf3FymCCcSIzGHMaPe4XyigfIzrrwCwMXgNLkUkqTS/nJs+/3bPvutCL+8L+d6JIT/+V3tbjY2nw1T2SNJqX5pJ79/DofHw96jou3/h95cQNazzig9zw6SweSJGHXFuOWVxNWem+QWvPpxAKf9Dz2mu1YYx6kSOJxwCtjN4Sx2U/H6363Z7/4T734tYkbfsboTjSKQv3aLJy7kmlsKOL1WVeS3v4/Jm/fSVGrgRZDkNq8Wurz/cQ13as+O3b3eQ++7/aQHOubC+HUJuFJSrT3TD5gZ3gsUz77hCGV21hBJlOGJoKX9RmjeL7kYiKygUHBSn4m3Y/dkAjUhhgVhhgVPBM7aF6XTuZoJypQt66QtExLv8BFUSXkfbYNt53Bd34+DQD3e/+j5MG3+fU10JARo+zW8UzIGcCvlv8OX7pEkk8lP6cU2MPY1CKaZbh40MWcNTKRZBuuqsa/YgW63Bxspx3+AoeHm6IotLe398lX8Xi+fC+ewWDo03OS1j0rbPv27YTDYXw+H83NzQSDwS91XpPJtN+A5POPjUbjFybcjhs3jvXr17N582aSkpIoKSmhuLj4mK1TFIgm/i+Ytf0L0w1OGczHl3zM8sbl/GLpL6j11KKoyjd+6YkjGrxEIhE2bNjAHXfc0bNNlmVmz57NqlWr9nvMqlWruP322/tsmzNnDu+8885+9w+Hw4T3qSPwVf4zCMI3mSwbGDzori993A9OHkB5m49HLx1NmtXAk4sr8Ei9nzBPUw2Maj4FgNYhL6GJmlHdRjymDj4tfZG5e24gy1mAq2YSjqJEbQ2dJfHJuEubRabFR523tx7N9JQPWBwtgWiiHowt4GGLfQSjI9sBuOS9F6gdk4VdL+OTU1GVxLoyi1edwvjxm1CbVJBAkxQnY3AnbXtSMHrdXPPOU91XSMxm6gzrmbwTClosLJzY1hPA7Gt6oPfGpQLzM8/kDyU38wSJirSF1PDvT2/js9pEToMqS6jAo4XX8UjR9wA4vWMFT+3+IyYlSHmJhfXqSAKhJOz2Dmzp7Qy6sAZJgorySXiyB2GWJGRZJicnh6KiIt4sC/NJXZxbJ2cT3/YxXiVKfdNWYBpdr86n5Z57yFZV/q99Evfkb+SlPS/z0p7EVOjhPgc//ncHSb9KpTUVZueM48en3dfnNYa2b6P1vvuwnHTSNzJ4icViNDU19fSq1NfX9+spORBZlklOTu6bh9L9s8Vi6Rc8NDc3s2vXrv2e51ACEqvV2qfE/+EwYcIEJuwzy+pY8kQS98UDFS216CwU2AoAMGqNSBz92VBf1hENXjo6OojH42RmZvbZnpmZye7du/d7TEtLy373b2lp2e/+999/P/fss96EIAgJvzun77o3r91SzIXvLMEYNzDVO5o7SPwhe1/fwcCChahxmVGf3cml3lQWZyxic/YixjTPomXtDbSaGxmU3oi+O3gJe9Mw2uKwT06sSamkdKBM+W4zqIkPFIN0FX3asKklBbPUiar23sRSd7ZRs/PglWK7rBFaUkN0JEUY6tGQWpNEdqeR2eszKM/z4bFEiWlU8ltN6GMyZn09SFBuKuC2Ib9moz2RqBlRdOilRMLnalc+kqyit0Xw+SxcPvwhlqYlisfMalrK8+V3oyExDDWkwo+Jev7LYHY3Jt5XvcGPVg5jjGUy7aSJFBcXk5+fj8FgoM0b4k9vv8xNlcuZs2Az1Vn5rJ0yDo+1jaonnyL8xF8BSL7ySi7+zW+p3/QXntv+HADXDLuG7+5Mx+l7iHiVG1IhHGrq956o8e5ckG/IrJZQKERDQ0NPz0pjYyOxWAxZlShSMhiu5KDVaLDb7Ikvqw1Zkqmvq8dkNGE0GDAajBj1BvQ6PRLdE6LaVWhTUZUAIbWWkAqpVw9F0va+7uTkZGbPnt0vIDGZTN+oWT9H0+a2zSysXcj0vOksqV8CJHpZDmRbR2JZg+Gpw4/JVO4v67ifbXTHHXf06anxeDzk5+cfwxYJwjePM+jktkU/4RrnLC5xnoGue2nET4myLWcxAyJmdq/9Lpr2XFLI5eLWcX2OV5fczRa9C4O1DQmIRZPprHeAETSSQlyVeVqTxYaxs5jZXE2yK5E8aXL2/aRd05KMVb8BVD8qEtLnVoluyM4lW23FpniJam3ozBHed1ipzehNxqwEMrJinL4ulWynkWynsd/r3ZaTzavjL2Ve9tlEZD2meIif1z5PrtVPe3pi9kdSXhem9DApg9085/oBS5Mno1FiPFj+GFe39A6VbWIYw9RyCqVGfqjO4y9cT0CyEAlbiGAhQJS1a9fS3NxMUUEBGR1Oul5+nSd3b+05x8B4iE1hG1GDlyXrNjIVSL3xRtJ/ehuSJPHjsT8m05xJgb2Ak3NPJqjfghNQtjXCRAiFm+lHSfSiScfo5uz1evvkq7S2trJv5Q27YmKEXEppLBNdvHuGTRxwdn91r/1dgAN60rNCxAnxRQM+alxF2ufuZTQaOfnkkw/Hy/pCkUgEWZYPe0/N4XbPqnuocFXwws4Xera9tOslKl2VXDvsWqblTuvZ3uhr7Fl2YkzGmKPd1K/kiL77aWlpaDQaWltb+2xvbW0lKytrv8dkZWV9qf0NBgMGw6HXwBCEb4NwLE6bJ0yrJ0SrJ8yqXW/y580/xaQmbvStKKxUY7yBhx96HVS89xCauAFQoN98mQRjxAGdDgAUpYuIUYuCRGtxFpmVbQwKGqizGVg7cjRzlvWf+VGVX0pxfTm+SKL41+cDl8UzzmT90MQNqFitYHLFDppja6lKT0WzT/pKTJtJW0orC6bEGFRnpajFjCHad/rpgznXszg3MR13lnMVf6p4nMJQC20OfU/wkntyW8/+5zreZUVoBud//AoWTzXNaTYUVWKXVMJj2mtQlRAfGn6DQYpiK9/I1IYwXbZkWiYW4DIVEggEqK6upro6UdlXM6KUlOwU7Fojk86eQ97QoaT+cSEteV7qCnM4efJPyLj55p7ra2UtVw69suexYehQJJ0OqS5xgw+FmlBVtc8nYnXvLJyjMPV278KB++ardHZ29tsvxZHMKOtA8j0ODG29s4Q0SXqMQ1ISvSWyBLKUKHor9f8ZCSRZSjze+7OceF6SEj9LmmPXM7Bu3TpWrlzJaaed1m8ZgG+SBm//0gWKqrCiaQXnlJzT89gb8XLzwptxhpyUJpdy7bBriStxKt2VrGpaRaY5k1kFs9BpvlkJ4Ec0eNHr9YwfP55FixZxwQUXAImkrUWLFnHrrbfu95ipU6eyaNEifvrTn/Zs++STT5g6deqRbKogfKNVtfv4ZGcr7mCU7CQjWUkmJKDVG6LVnQhQWjyh7mAlRFegby2M4dYQN6lGfHGVz/xhokpiQORSknC5ZwJgSKonWLyKR6vO5Y8ahYEhO5WROO79lCuJRxLDvppcLzMnl7GrspSQ08gloSd5sfAqqmsGMaC+rGf/tSOmsnriafzoxQfRxntPGNPr0EYSbf3p9n/zlMnA+oJRVMkDqSodCJyPreMp9r09jyvLxJUyCr1/M0l+uU/g0mEPs3bsBewYMpVUTyf3bP8bF0cX9Yzgt9Ukwaj+OTLptHPqivcpaKqmilSqfL3rvcipTlIdiTYHjDJjBtfh2KAlOdSBI3sX+btn0bZ6O60pKbRnpNOWmUnYYKA9M5N2oHL1arTr1qF3SGiiZuK6AGusVgYd5N9b1usxDBuKsnNL4v2O+4nFPOh0+9Th6Bk2+nI38nCtB89HNchWHalXDt3vPvF4nNbW1p5elbq6Ovz7KSS3txhcYUou6W1GYtu6UFqigAISGAclY5mcjXFwyjEJOOrr6/nvf/9LSkoKl1122dcaQvJ4PKxatapnJelv+tDKE7OeYKdzJwaNAbPWTKY5k0AsQCAWYHT6aAAuee8Syrt6Kz9btBZuWngT5V3lPTOUILGExWWDL+OKoVdg138zir8e8X6v22+/neuuu44JEyYwadIkHn/8cfx+f8/so2uvvZbc3Fzuv/9+AG677TZmzJjBo48+ytlnn82rr77K+vXr+cc//nGkmyoI3zgVbT5+9PIGylq/uFT55+m1Mpl2A1k2AwXKFD50uYn4TNAdCmiRUFCIZW4lXPQpO20VjJLzoBqe0np5whRhpj6DTzU+XEEfmkDihq6qKkp38LIkLcgnnVpO1cfRRDR8tNNMZsE8Ph2TxYWeXFLcLgBG1NUyZvdDfQIXgPdnXMyvK59lV5WNFr+V62oXMH3XSnZYh/H+tNNQNBrUfWZY6aMyDncT43e7ULuXOlQkldqsADuLvHTlDqE9qYQ59Qu55c+vYAuFaC528L8J07lBeo81zgKK9llCei1TmMRqAEZWb0LdT6/T9M4VFGY5QAGDtYTcT0IEdVFUvYX0x4KE+Aw7EhkFg0g+7zyepoi311RwWi5My1SpqanB7/cTswIkXn9lZSVPPfUUQ4cOJSsrC7fbjcfjYdq0aVi6y+SbRo0mtGUrmqiRuC5EKNzcJ3hRe4aNvmTPiwThKjeytfeTdDQapaGhoadXpb6+nkgk0ucwjUZDbm4uBQUFFBQUkJebh1QbxL+mmdCyLiJqIilUtuqwTMzCMjELbUr/Ib2jpa6ujueeS+QRtbe3097e3i+f8lCVl5fzzjvv9ARwFouFEYMHo0QiifWWFAVUNTFstvfn7u90b1MVFUj8LBmNaByOIxoATcmewpTsKQfdpyPQd2r65vbNPT8bNUbGZY6jrKuM9mA7T299mosHfb1lKQ6nIx68XHbZZbS3t3PnnXfS0tLCmDFjWLBgQc8vUV1dXZ9oeNq0acybN4/f/e53/OY3v6G0tJR33nlH1HgRvpVyHSbqO4NoZYmpJakMSLPQ4g7R7A6hopJlN5LZ/ZVlN5JhN5CVZCTTZsQE7Fndyo5ljXS1BIh0J+jaNZCtk0kxBnk6Zx6rkjYDkNyiZYa+g5KohE+nEoj8lfoJKWQaWvB/egcKYMtfSzzSRtjlRpUl2rIC+GWZpqQw+e1mTGE9F6e4yVraxWcj3VywPAcAs6d/winAmUve5sUp5zGxajGtISt5vt3M+TjOnMhqLlm0gPu/ezO1qbkkeXUMrbVR0mhBF5e7B5xUSpLcuLIdvFjcQVJIx9+Xb8Fz/lq0+XHkyRpYqsFdZeakqo2sLcnHPLs3w9iNnZWBk5hkXk0spEGN7/9GolXjuHc00VlsIqWjnIKxwFiIeDUEXQbUzLEoKefjCeTSmZvNOx+34lZNzJk5njNHZPWsv7Psw03s2VFO1NyJoiZ6Nj4/RF5RUcEPf/hDNBoNptGj6frPf9C4ZOLpiaRdm3WfEu5Kdw/Sl+xN0GVZQALFF2Xt84vo6HTicbmRFJCRMCMzhGz0Gh0OexIOuwO71YbFZEFGAreKulnB/eZ24u7emZ6GgQ4sk7MwDUtF0hzbJNlNmzbx7rvv9tmmejyoaWkgy8RdLmLt7cTa2ok7O4h7fSg+H4rfR9znQ/H5Ubxewn4/axxJlHcvD5DkdjOwrJyslhYq//Xc12ukVos2JQVNWira1DS0qalo09PRDxiAobQUQ0kxsrn/1ObD6Z0L3sEZdOIMOXEGnXSGOkkzpTE4ZTCFtkI0soZoPMrHtR/T4G0gzZR2RNvzZYi1jQThG25VpZOPdrSQZNIxoSiZsQXJWA0H/tzRVuth+9JGyte1Eot2Dy3oFOqzt7PK8SFGXZRfNX6PQaHENOFPjdU8GW7lt9W7qHdcDYApfQ8FMx9BVbTULf4/Qp0DMDjqKJx1P1UfjsXX6MPgSKPgkmWs3ZpC8trEh5Glo9sJ5/mZ3WhF3poCSuImJuuKiVvG44t+gs3vQmc+k3hkG0qsEb/Jij3iJR6XGOFppaDahyEpSsito81m5r1pI8hpcfa8vk5bBF96Mee7h5NrHkC5vYU7Cv9CQTibR6p/RuOsW5FkMOySSH0i0bugAqsvSaPwtEQQ9XT0dnYFxnNr4+8oHVZNZ7mdLZvGM7W2itzSRha1lvZ7X/VqjPPNO+kymUi2Bsky+tBrEr0fDQE7b9aNIKZqcCQruDMKmDx5GvbswXhDcfx+Py11TuoqWpGNMcKqt9/596p2jMOlSyUWChOoqOTiaW8xNLeM92uvZHXLTGKKSlxRiYTCxCJR4hotf/rOWC4Zf+DlI9xud8/wT21tLTMaSnCo/Vdx/rJksxbzhEwsk7LRpR37FexVVWXJkiUsXbq0z/aTP1tGblNTIo9Gq4XPLTGwP23p6aydPAl/9yKLg/bsYeTWbWi/REG7HlJ3Do8sJ74fwvWRJHT5+RgHD8Y4fHjia8RwtMnJX3zscUqsbSQIJ5ApxSncMm8jnf5EN74swdwR2fzm7KHkOhI3jGgkTvm6VnZ81khbbe+NMWDvYn3qJ5SnryeqCaOTdYzNO4W2MduR1u3Gbm5jiM7Ln1J2UcNPoLtobrB9MJWrv0vAnYfeU4hOgmE6O10uHb7GxBCW1lSC1LWW5HW9lbJnbEknti0VuTtoMZokTnJczY5oBp3hFiS/C2QJWV+KrC+hQX4Tu7eLmsIR5FftoNyUSpbeT/lUB401KQQMenJanCio1GcG2TK4iE7LOkKWIjYapnHbnjBSqHsYSOelbcqD+GQbNrx0ddhozrXSaTHiMxnItCYSTDt2nsXM7UOZSQB7aeKTbWN6Adk+hTHxShqUvisCA+hicSJaLZ+1D6HNokftzlU1mzQk6YM0u/U9+2bEnHxfXgHrXkFBop0UmsiinRIUQxFRVQOopNFFBynEJB2+uIYoGpyKmQ0tEN27YndSDo2xbIZShqS00eTed/aWBJrEdaPx3uRYRVF6VlreG7C43W72tV4Lo6UBGExGjCYjRosJvdGApJESvSaylMhR0UiJhFmNnHjcvV3SSGiSjZiGpiLpvhlTkWOxGO+99x5btiTyhKZPn87EiRPxPvEE/mCQuCQlhnC6AweNw4E2IwNtWhqy3Y5staCxWFEsFtZEo2z2JobB7EYjZ40bT9GVV6KxWpGMxsQMr55gRE4kHMtyT3Ai7Ruo7H28DyUSIe50EnN2End2EOtwEnM6ibW2Eq6sJFxeTtzpJFpXR7SuDu8nvcUftTnZmIaP+NYENAciel4E4QhSFYWK9asxmK0UjBj1lc4RjSvMX1fP+ppO1td20dCVSKQz6mS+P6mQMV6Z2vVthAOJfApFjlOVupntGctosVUjSRLqPjN7Xp5+G+019/e7jrdxDI0rbjlgO8abNVTGnqWl1QWAwTqRaGANirL/m1djWpDcDhNFGWPJSlbYWKsnElpH3FaAXXsecfQ8O0tGIYgzOZ3bn7273zm0ahylSMNrAxrxmXvzZbSKlgHBc0mJpLMzowNv9C0K9XGUzJ+yUZrE5e0VnLxwG7XuDb3voz6djMLJBDsGsndGVUrqJ2TMeo1aimh9cwLfsXxAjUfHlq4cQrZUNLEwumBvvlHEnoqkKmiCfuRY35yQvUwGlVOLm8mXWrGqfXOVgoqFyuhYSvID6Ns28yTXoh19EVmFJWhkCa0sd3+X0Ggkuv72N7SmT7Cc2YbOOgdHzp/67KfTSKAohDxOOloae3JWPl9dVpIksrOzKSgooLCwkPz8fKzW/kHa8SoUCjF//nyqqxO/72effXa/AnFqLEbc5UINh9GkpyPr9f3O097ezvz583uWKRg3bhxz5sw5JjNaY04n4bIyQjt3Edqxg9COHUQOsH6T49JLyf7D8V/vTPS8CMIxpihx9qxazpq35uNsqCNjQAlX3//4V0rQ02lkrp5SyNVTEsM8O5s83P3f7fjKPKgfNFOmJs7pNXayI2M5uzNWE9L5GZQ8iCuLb2fugLk8tv4xPqxJLCL34huPMnc/hT8zUjYwyP4kiz37D2A2BOKEXb2f/MO+dew7rdqmDWHRRWgJJv7o5HYkeoVq2jZx9/haLq8ZgBEwKiOIk7hxaFQLxlA7J69d2OdallCEgk4PzZd7eMKsJS7v8xlLhVmNs7DGZMCJS+tijw1qoiY6pMSCr6+mD2TDWYUUbwKPNYlJmz5j28i5nFSVGLP3hv7LqGaJlPIN+GdBrlpPY/pEfK4oW7q6q+7a7ER0BnS1vQU19VgYkX4GO2Uf6+LtpKohimpW9Gn76pwzuenOWxK5fJ5maNoE1Z/B9jcx+dsYYVgObaBIWvLUZsr2rOL6MydhMvUfdukYnkPd0k66ALOmg1F5DsLhcJ9icA0NDcRifROhtVoteXl5FBYWJpJr8/JO2JISbrebl19+mba2NnQ6HZdeeimlpf2H/SStFm3awXM2TCYTgUAAq9XKeeedx6BBB5sTdmRpU1PRTp2KZZ+ZtnGvl9COnT3BzN6ARpd78CKPJyIRvAjCYRSPxdi1bDFr332druZEfoXeZKZ47ATisdhhWSwvV6/lAq9CVyARAHSaWlhd+C51jl0k6dO4avDlnF18NqXJvX/AH5rxEKmmVF7a9RK+DpnUP2tRTPChVWbnNMhKUflVZZAM80JaowPZGZyTaLvk55LU/6M8dDI7/LMIqfsOW+gpNBpIce9hkyGH8pQYvmltDHyn/yemTK8BY1hBkSRkXTGqGiEe2cX5CzZh8fevF5IaN9Jug8CneWjPKCduVFE0pcjxcjSqBmust9cgoiZqq0hqBG3USUyXSK4sT9JRPvNCAJoy8ynw5AFBvHINumAFBXVVyKqC3y+htcRJd65nUdtAAOKaVDbrJxHUhDhFrkCrJIKDfH0hw9VUBqXlceMtl2PWa1nw98fZsXQhQUsa22xDGGp08swzz3DzzTeDPTvxNeQsOONelt7/D2yutQwYk8ainVPYJVURJ8CyZcs444wz+r0PptGjib+vB2K4XFU888wztLS08PkOc4PeSNGAwp6elezsbDRHof7Lsdbc3My8efPwer1YrVauvPJKcnJyvvL5rFYrV1xxBampqZiPcLLsV6Gx2bBMmYxlyuSebXGvNzHD6VtGBC+CcBjEIhG2L1nIuv++gac9UfzMaLUx/qzzGXPmORgtX7+LvsnXxAfVH9DwmkR6+wBiUoQNeR9TXrAWQiMJ1N6AN1jEzlg2Vw0q6HNs3U4nUyovYHj6Sbww/D66PqshywUXAeevgrWDZZblGrgozU9kn0TOqGpkg0FDS6yOMt1K9n5u1ehHoDWdRKtsoTH2P4iV0WnWoD/AX5SrfDo6Ab8pSij+LmZvCxDl8ymjQYMJUzhIILUQv/FMZMnE1ZsDvDz+XnTBAJ2OQRAqI04cDRrWpK+hw+Aiy1OM09KIyfUK3vT+NaTqcosZ2xBk9SAD1anZTNqQj0QlKhLeThM2SwBDShB/mxGLGmHChHPR14MrqRKroiHUPcV5bNE4cELKiHTcdZXUt7fjbk8sXbLLWsLQ5ERw19raSktLS9/imhotwYxT2N4wBGc4k9bOVlIcWtp1m1mzZg0TJ07E4XDQ1dXVk69SW1ODd+pcpvAm4KK5uRGQSUpKSvSq5Bew5d1Ogi0aTr5oLPlDUg7lV+mwaQtH0csSDt3Rv5WUl5fz+uuvE4lESE9P56qrrjosCx8ebxXaNTbbsW7CMSGCF0H4GqKhEFsXLWDde2/h70r0IJiTHEw49yJGnz4XvfHrzcBwh918VPMR71e9z8a2jQD8P3tnHV/Heabta2YOk46YWZZlmUlmiJ04ju0wONSmKW7bFNJut5t222bbflvYcrttU0gaZrYDxhhikmWURRYzHmaY+f4YWbJiiJM4DVS3rd85M/POO+/Ambnngfup0K0jlUJiiQE+eftalub8FAEN9+1o4rdbT7Kppo/KVgc/vHoK66ZlAvDaX6qJhtQsieV8i8BXjOwYvI+UjfuZ3A4L6hQ6PZfxt9xLCOm0CGKMeKQWRfbS2P1Lni59mrJjAilAomk2Qf2ykTHGh2Xepw5cQ/CQA6g8Yz8cR1RriDWgATrOub+ior5BDoZa0OlCiJIRrWJiQdvVvFH8GBH7veT2bFADJBX4Wt/NBNyZ9IQ19Jvb+Ovqs5vPFVHihQWnCKQZMbqImYHtmFrSCA+FsOYGMKWEcAD53W6MJ5rIz83AE4+z4GQ7vSYJMXcFRp8ZiBPP0fHCr35AYGhUJ6NM7yLO6INEPsvb8ECHGkzdVqNmT81bNp2j3UN0dHTw4IMPIsvyWYrLGpFlAVFUuOaa5RQWziYhYVTvxX+ynuqdXdS+2fOuyYuiKLiffRbD1KkYJp67/s3pqPMHWVN1knyDju0VZW+/wkVEVVUVGzZsQFEUCgoKWL9+/VndbuP4+GKcvIxjHO8C4UCAI5s2UrXxBYIeNZPDkpxCxVXXM2XFKrS6dx9fEIqF2NG5gw3NG9jdtZvYsMtCQKAio4LVM+Yx+DcRg8POxOAMdMMZJ3etmMDKSel886mj1PR4+Mrjh3nleA8/umYKRdNTqd8/WtzU1SDwb//9DyrXV/LvD9/JpYclNKYVRLyPQEjdGsNBvlFtMdfW3UA4oFZ39ktlY6TclLiaoiSJKZj7dLxdEmhCoQfJvxS3R0s8NEp0FARevPxOrtuyGU2wiWD8EKn2y9D4ZVb6p7Ogy8T0Jgu26Kd5Trcfh+jDGrNSatAzGImT5s9H1lzYw9sU9kO2TF0knYxBVWvFmBKisN9F/qAHYfAfpGemE0+xoxO9pMnZ+HPmQDhOmBh/f+I+TC7XWEk7xwCYLCAIrFtXQHp68hnbNZg0eIBAMEAosY3d9cdxudTj53K5AEYqU5+KV9E+/DDtQwrxVCgosI0hLgCTFmVSvbOL5sMDhPxRDOZ37poc/NOfGPzd7wHIuPcHJN5883nbh+IyXzrRRiAuY9P889xTiqKwbds2du3aBcC0adO46qqrPvR1hsZx8TF+xscxjneAoM/L4Vdf4tCrLxEeVttMSM+g4uobmbxsBZLm3cW0xOU4B3oPsLF5I1vat+CPjkqxlyWVsbZwLVcUXkG6WdVTeaX8GC1HB+lv9Yx5256UaePFuxbxx+1N/H7bSV6t7uVAs4PP5qWN2Z4gwv3f2UnQEWMNv0M2davEZQSjMRWx8CEkTT4QRxATEaTRvhQlDIpaeEiQEpFjZ8+GOIXJ159kcEcOCS4HrtMq68naVDRSCXfsNmHVz8euTSLFmEeyRsRkkwAteNVikSERBK0V4j7qtR3ky6lM0CvUhGQuP+Tn9Vnn1y+ZWnuQS3a/Qr9cioEggQFVBdaYHMbs8aIIICiQ2NOHrW+QjknLaU65molRI0jQGw+jCApieSFSSxtxn5p1FE0/Fb4s43T9P97Y8SOmTP4tVusKWltbaWlpoa9HQkCHN6GOqN5FwKVmAhkMBoLBIBkZGdx5551jgmud06bR5XiCeKpC6CzVpVPzrCRnmxnq8tN4sI8py86t93Iu2G+4Acc/HkT2eAhWV/N2ibc/ae6hxq+6yD6V/c8RLovFYrz00kscO6YWvFy6dCmXXHLJh16mfxzvD8bJy8cAby3YNo6Lj4DbRdXGFziyaSOR4TTUxKwc5l97E2WLliG+i+BIRVGoc9SxoXkDr7a8ykBwYGRZljmLNUVrWFu4lpLEkjPWdfWphCE5ezSWxj0QpK16EK8jTJkzzA9MyfT1+tG7FOTuoTHrO3tGKx3GQkeIBbeNTEumTGyFGeyljIknHkeO1CJHVVdPorGMZIvMgNRLyJONIo+6OMKuP5x3fzWmVYQfnEJCuI2GFAcoPgS0pNpWk2YsJUUrkqQR0Ao5wPADWIGYotCql9lje5Vj5nq6NAuRLRO4rL6HRk0Pq8JQpBdpDsuYQ6OkS5DDY0oLnEL1xJlYoz5mH9yNIRIi4tESj4hIOpnDFamEHAYS/CFSvQFK+5wUnNiBOdmBfYGaheWztLJgwZNoNFFYCLGQCAJ4/elUVxdhNHoQRdVltGPnE9ScODiyLymRU5WPBebMrqB0Ygl5eXkEg0H+8Ic/0NvbS3t7+5hsGeP0GUjPqpawULDrjP0RBIGyBZm8+UwjtXt63jF5CYVCNA8OUvTIwwQOHkRfcub1djrecHi4r1O9VlN1GtamJpy3/cVAMBjkySefpLW1FUEQuPLKK5k1a9bbrziOjy3GycvHAL859BsO9h1kbvpc5mbMZWbaTEzaD1+k/EcRXscgB19+nmNbXiMWUaXQU/MKmHfdzUyYtwDxndaVQa32+krLK2xs3kizu3lkvk1n4/KCy1lXtI4ZaTMQhbPrp4T8UZy9KvnIKBx9cLzw60P4HOExbdUogHMT23i0ZSxxmbgE48wXyU/YRuO+a+hMKyC3vxWG9Ur80kTqBIXySU8Se2MhsdCet91fAZEUQw45tnLMtnREpZxsUYNG0GLTpaF5y35GiTEgOxlwVdMfGmTzzBt4Y1oCZqcHg7+Jon4NOf1qNV9d3MARQz0zQhMpNYhsMtYBah64LniYmDaTuC5/TP+KKLFn2nIOlVawoGo7M08cIDhowJIVwJgSIuQw4DYb0J0m/JbqacYyXFhwV34SS3u/gsXpRJZCtMR9OM1OrDqVIJrMLgBOnpxHb0+Run5qKnnZhbS/pu7rgvJVrLhytCiiwWCgoqKCvXv3snnzZoqLi0fKpuhLitH4tEAYf38dFJ55jCfOy2Dv8030t3lx9Qewp73979/v97N//34OHDhAKBTiS1/6Emm33nredYYiMb5a2z4yfXtmMrr3UOzwQuByuXj00UcZGBhAp9Nx0003UfI2BGscH3+Mk5ePAfZ276XWUcuxgWP8vfrvSILE5JTJ42TmPcDd30flS89QvX0z8WENjYziCcy77maKZ81VFTbfAVwhlxp427KRw/2HR+brJT3LcpaxtmgtS7KXXFDZ+b5W1dqRkGbEcFpxPZ1BA4TPsRbEBeiU4nRoZARFQUl7hTnHRsmTMGsO6SuvYaBlB9AHtq2kDI4G5ooaHYKURIovTvtmM6b4mcRF0k9HY1hI2PMwEmFmJF1CnqUc3YgF5Mw01rAcxxETGIwrDMVkhIJtOBuXEfbUgOKjz9iILM4ipl/GzAYD89qvBMCRrFZoftG2ixmhieTrRAxy/+j+ajKwOu7HlXGmeJcYjxEymNi+aC1Hpi7gXv8PsBAgwxLCMtmImNGILhLH+VQxif1NaNImIQgCocAAD2bmsTGQxLTIIBO6OjFZnOQlNjI4UABAJGLkRPXXKCgoYNHCQgoKCrBarbTXOGh/7QgAs1fnnzGmJUuWcPjwYfr7+zl69CgzZ85Uz4skYTDl4qWRgLPxrOfWaNWh1UuEAzHisfOnzZ6qjnzw4EGiw2qzKSkpZwjbvRWKovDN+nb6I+rvQRLgk9lnxvVcTHR3d/PYY4/h8/mwWq3ceuutZGZmvq/bHMdHA+Pk5WOAX1/yayp7K6nsraSqr4ouXxfHBo6NJTPJk5mTMWeEzJi1772uyccRju4uDrzwNLW7tyMP1zDJLitn/nU3kz9t5jtyzwVjQXZ07GBj80Y18FY5LfA2s4J1Reu4NO9SLLp3lkbd16wGCJ9udQEompGKo1uNlRE1AtYkA7YUI+mFNnJKE7Fkynzn8f9mX8tlKIiUOcsBlbz4bCk8k/Es+hMvcItF7dcZXovOelpcSiyCHOtB9D7OmVRYi95+F2ZJQABMluVU2FKx69T4mFDcT0+gGUe4h5gSISbHkJUYeslElqkYjZRKc0gNdqVpBYIAKaZpDPr3sHbfLrS6cpZUZ2APXDmyRSlqJ64NYHLp6IlGydRqWeks5vXh5YqUTZKjA1fGGYNFljSUNxyit6AIhy2Jp63X80V+j7bcT7L5ECgCiS9k0rn0i7Q0drJQUINqxa5DvP7171K/Pgum+7EUDI24iNpaZwCQKl3OjXdegdE6VsH18GY1HkiUBGxnqQNkMplYsmQJmzdvZtu2bUyePBndsAqsOX0SAzQSDveesR5ALBIfUVg2J5w9WNzpdPLmm29y+PBh4sPXdkZGBkuXLqWsrGxMgdyz4ZGeIV4bHHUTXpGSQKb+TJXai4WGhgaefvppotEoaWlp3HbbbWcEK4/jXxfj5OVjgGxLNtkl2VxTcg0AXb4uDvYepLK3koN9B1UyM3iMY4PHuL/6/nEycxYMtrey/4Wnqd+zC2U4XTd/2kzmX7uenPILr2gel+Ps792vBt62bSEQG40tmZQ0ibVFauBtmintPL2cH30t6gMkvXCsGNzctQUUz0rDG3Bx4PAe7PYEZs4sJjHRQGPjT6g7+BTXTYAZacd54PjtzOotQmO6lLDkwXTF86QGYCAeJ6brIR7XkOIXEN4igR/xPj5mWhATUGQ3oiaLYrGeqbapw0smj7Q54dpDjWsPimBDkZ0j89fkfA6rdjTYeFq8hbpoNpFhN5dXMwOoRAkOsObNWiRtPh5DiMqcp6nN8pCg+Qyra7rRi1lUO94gM/0yunNGLRpxjZZlx8poLj/7cWwunsxzR77GtuQKns9dDCII5gjIApnVXyCw5yn61/kJ2ycgJ8bV+Ju+EwgKlD3RTbBGxnODjMtqITGhgoA/A4jjPCny6A/2sfC6EiYtzEQQBdwDQTpr1X2fMDf9nCS4oqKCAwcO4Ha72bdvH0uXLgXAWjQbeJmo9q1p1Cr8w9WdNVoRvWnsbb2/v5/du3dz/PjxEXG73Nxcli5dSklJyQUR8sZAiO+fHBssfOf7GKh78OBBNm7ciKIoFBUVcdNNN2EwGN637Y3jo4dx8vIxxCkyc3XJ1cAomTnYpxKas5GZ8uRylcykz2VW+qx/GTLT19zIvueepLFy78i8otkVzL92PZkTLkzvQlEUahw1bGzeyKstrzIYHNX+yLZks6ZwDeuK1lFkL3rP41VkZcRtlFE09i1UlERScizsfXk7tbU1AOzdq+5XYtIANtsU0tJaKEpo50umZtxyISH9VB6zhuFoMZIQJmRsJqrbxp6qVUiAztFzzrFoDIuIhdT+5VgbOorP2m6yfSETbXMZirjwRbsJxfxE5OAY4gJQaC4kV1FoDMu0hmXCogFJP5l4+AjxUBWilM6h1H00pFahiSo4WvpQFDAJAoORYzxhm8rvJo6NhfBY01m+5xXeWLjmjHGFJD2fnPwdbmj6FpOathAtAa0AaXW3o39jAMc6L0ZLNfqB5egVAzEhjN/XyKlHqPGYiKbayPZJS5n7o68Qlx9DEATSMlJwdAbZ/kgddft6WH5bGce3dwKQNzmJSz91DjYFaLVaVq5cyXPPPcfu3buZPXs2ZrMZ2+QlUAOyQSbs7kWfMNac5Hep5MVs14+Qke7ubnbt2kVtbe1Iu+LiYpYsWUJBQcE5x/BWRGSZL9W0ETxNt2ai2cBC+8WvjSTLMtu2bWP37t0ATJ8+nSuvvHI8FXocZ2D8ivgXwFvJTLeve4TInCIzxwePc3zwOA9UP3AGmZmZNvMduzY+7OhuqGXfc0/Scng4E0QQKK1YyLzr1pNWcGEko8PbwSvNr7CheQOtntaR+Qn6BFYXrGZt0VpmpM64qJlgzr4A4UAMjVYkOfvsBHPZsmVUVVWNXc+Rg9ORQ0f7VDLNQSKNKwGQ8vejD5bRF7arDUPpxBM7IB5D5+hD5+g751hiobE1ffwx1znbakQt6YZU0g2pZ10+GOpEklJI1BooM0hM0It0RxWc2kU4vC7ckQH6/I8S6pqGnFCKZK1Hk/QMrr45JCIQNdu4f3omsiBwbUeEXQmNDNrK2Tctncv2Hubb93t5dN1KOtPGWgsGDXn8I/9LWB1/Y0FEpEAvE9d5CA5tJ7woinBcJm24avIRSyP336zwo0dAN1xKSCvHufnEFtx3HCC/fBL+ObNZ/6V5HNveyf6XW+hpdPPMTw8ix1WLx6zLz4x1eSumTJnC3r176enpYceOHaxZswZDRgFilYhslPGc2E3qwhvGHnuXaiEz21WXUU1NDU899dTI8rKyMpYsWUL2u6iB878tvRzzBrFrJKKKgj8uc2d2ykXPcIzFYrzwwgtUV1cDsHz5cpYtWzaeSTmOs2KcvPwLIsuSxVWWq7iq+CoAenw9Y8hMp69zDJkRBZHypHLmZsxlTsYcZqXN+mDJzKm6Lqff1Hz9cPhhOP4M6G0w+VqYch1YTtckUeg4cZz9zz9Be/Wx4S5EyhYvY941N5Kco0rqNzobKUgoQCOe+fNwhpy83vo6G5o3cHTg6Mh8vaRnee5y1hWtY1HWogsKvH036GtR413SCmyI0tljFGw2G/feey9tbW289tpr9PSMWk+EiJVQz1JEIGe6mZ6ahdwSjdMx18bzDT3MHqgmp64bt2EARXlnQcl5ZjV75phjB6IgUZYwD42oRVEUBsNd9ATb0GhLMWqT0AsCehG0gkKjazsnPVWAloLkOyg1JZKoEcnVCeTozARzpuHM3UpI38ucmIuTPiONnpm4RR9pQQ9RYwK9E5fhM6nX5DfrwmRmG/ljOXRlr6AnV0tu+0zKmt+kM+UyEMe6H0KWZSyMHyFJ2QlAMLEBZ6GOnk2TmXfVFxAGmgCI52poUQTuWy3ylQ2qFcJyzTU0vbmX9IE+5u/fj7+ri/Dy5cy4dCq2FCOv/vk40bAaX5JeaCNrgv1tj6Moilx22WU89NBDHDx4kHnz5pGcnIw2YiFs9OBtrDyDvPhOs7wAlJSUYLFYKCoqYvHixaSlvTs35ZtOL39oV4Ogr0qz81D3EBZJ5Ib0t1OCeWcIBoM88cQTtLW1IYoiV1555UjA8jjGcTaMk5dxkGnJ5ErLlVxZrAZDnk5mDvYdpMPbQfVQNdVD1Txw4gMmM94++OVwpdevV0NCDmy4Gw4/AvJp2q4d+2Drf8OtT6EULKb1SBX7nnuS7gbVhC5KEuVLV1JxzQ0kZoxmwIRiIW5/9XYMkoErCq9gXdE6ChMKRxRv93TtGQm8FQWRigw18HZl3sp/yjHoPUe8y9mQn5/P5z//eWpra9myZQuOIRc2VzmioiEqDXG87nlsWh2yK0zWlkG+KPsQAZdef7pG3QVBQCQY9xGTI7T4qgnFfbR4jzEtaTn5lnJSDTnY9ZnUh+B4UB7TvSIuQtQMIMfaaXe/Rq98E4mSTLpWQJr/G+Jpx0famoEZqbCkZx4ZJ75Mt+TlNY5QlzFq0Xk+R+DO9hSezGtlyFJAXcEi5rYHmFnrIZh5jDfzK84Y/17957mqqRnKOwlIA9SFU1E6ZBwtWyiUC0CEZWETP1v5M77Nt5nhsLJkj5vApk3U/uzXHH/iUZbt34O5s5PWG28i4brrCMy9fsw2Zl2eTzzu50TNN8jJ+STJSYvHLI8NDeF84gmcjzxK3Omk4Aufp9XtZuvWrdx0003otemE8eDvqzlj/P63kBedTsdXv/rVkYDfdwNXNMZXattRgNsyk+iLqL+v9RlJWC6iqq7T6eTRRx9lcHAQnU7H+vXrKS4+uwtyHOM4hXHyMo4z8FYy0+vvHSEylb2VZ5AZjahhRe4Kbii9gXmZ886pT3JR8MvT4lBe+0+wZUHVA+p0zlyY/SkI++DIIyg9x2n8/R3sEy6lv1MNNpS0WqauWMXcq67HlnLm22izuxmtqGUoNMQjtY/wSO0j6EQdEXk0cHVS0iTWFa3jisIrSDWd3Q3yfqGveTjepfD8WReKLOMdGsTR1UGou5MSSUPbYC5y3Iwi+4m7nsGo+MdI+Z86a6IsYwuEcSYaEd6i9R+130G9Ts+U/r+M3R4ye/pfRBI0xIfJXSDuZd/AyzR6DlGRvwJrNIspRijQiVQH4/TFVAojCBq05ssJu/+OHOtEjvXhJB1nXKbY3M0pG5ZzxyzsmUaEkr14M/cj9ZSSNrgMQREo62pgyGqly2rnofw4t7SL/NeJGHdXxGjLNNCQFcUlFfKL+jLuSIzSYFN71cVC5PT10JxdyB+SvsZ/cQ8agwNFSUYRRCK9CoKoQfYPEPf1szTnKrSilj8u9rE0NBX50HEW/ezH/G3FpfhT7FzpdCHu3In7ueeQnnuO5YjsWPor7FkJpJV4OFj1Sfz+BjyeYyxc8AaSpFqB5EiE9k9/hnB9/cgxnbxtO62zZ1FTU0NHRwfGxGI84ZOEvO1nCFOeCtg1J4ySlfdCXBRF4Vv1nXSHoxQZ9XwuN5UVB9SxXUxF3a6uLh577DH8fj9Wq5XbbrttbDHLcYzjHBgnL+N4W2SYM7iy+EwyU9VXxYHeA3R4O9jUtolNbZvIseRwfen1XF189fvzYLdlgWdYZbRuw9hln90CgOzqpGHjP9jfNovBsBnoRqPVMP3yK5mz7losieeuf5NnzeOWibfwRP0TOMNqdkhEjpBtyWZt0VrWFq2lKOG9B96+G0RCMRzdqljc6ZaXoc52BjvaGOrswNHdiaO7E2d3F7FIGEGTg9a0AlFSC+cpikzUvxFZDKPRW1CCgZHsKkMkSnG/i9whD4cyCxDeYkjSJRl4XusgpstlhvkqYv6XzhjjKeJyOgbDXbzS8DAVC8vI7luFBSPzLRr6ozLVwTheGQTRiqibiBypJRbcgdZyA4Ig0rHzaxRc9iNETZRYcgvNTUlk2AswpzXjmvUwLh4me/9tKAEv/36kj7uX2BkwWnBohljiSqe8q5WanBJem2VipbYDYXc+3zsh8Yn5GhAEIhoDQaEZczCFxswiHo9/kk8a7mdRfzu12VNxdOvACLG+avaF/KS2BJibPp89PbvY/cV5LPvBIHR2cO22TexYtIiUH/0QW08PrTffAoCIzCU7vw5f/x86Ozfg9zcAMG3afSPEBWDw//44QlzMS5cQH3JQcO+9dDU1cuTIETZv3swly8qh7TWixgDRri50OaNKum+1vLxXPNXr5OUBFxoB/q88n2d6ncjA0kQLE8wXJ+unvr6eZ555hmg0Snp6Orfeeut4KvQ4Lhjj5GUc7xhvJTP1jnqeaXiGDc0b6PR18ttDv+UPh//A8tzlXD/hehZmLUR6F0q0Z8UX98DP3hL0mFYONz9KPBajdvcbHHjsPpxu9e1QJ8aYmdjNrKQuTE3bIboQODd5+faub7OzU419sOlsrMpfxdUlVzM9dfoHHjjY3+ZFUcCSpB/zkHr9vt/R01B3RntRMqCzXg2obfUmKF+SyMnOyfTvH0AOqETIEIlR3O+k35LNjtlzuXHPy9SlZZLEqOCbpJ9NxFHFtbxMZ9InEUULpxdvvBAc2FOHRuxhcuJSJljLSNOKLNcItITj1IcVZMN8IpFG5Fgn8dB+JMM8AoMDOBtNJJe5SZ3iJHWK84x+CyoexX1kNRFXOqZoiIDWwF+zD/PttoX8uM7Kp+xhPBY9rW0ZPDRwH/FwmFnmqzg0bREAzqQFrNr5HC+tup3XpbVMVo5xafoR5lcdwXjZjQDE+mvodWr5jwcq0SSkY8yCB1q2UrTiGjKe/BsZnV1Mra7G6vEi2s7yAP7Nd9AfnwfXAiKEgp0k2KYDEDxyhKG//hWA7N/9FtuqVSOrXZKXS3V1Ne3t7TjdqkUinqgQPHr0rOTFchHIS2swzHdOqtlR/1GYySSzgduOqerBFys9urKykldeeQVFUSguLubGG28cT4UexzvCOHkZx3vGxKSJfHf+d/nGnG+wqXUTzzQ8w5GBI2xt38rW9q1kmjO5dsK1lCaWIgz/EwVxhAyMTCOg/h+dPtXm9Gnhmt8iJBcjKgrJGhNJyZOp37mdAy/+GM+A+sA1SFFmzZnIzEtXYXjuttHB/nG++nnHBihcMjI7FAtxsO8gOzt3IgkSP1z0Qy4vuBy9dHHeZC8Gek+J070lRTqzWI0BSs7OJSkrh6TsHJKycjBYknn0BwdGxMtqkjy0PXs/9qhaDVmWNCRFFGadbKXTnsBTRfNp0+ax3LyTBR0n2TJhErnDhQAFcVSWLte9mUj83CnU50NMdnN06GUa3buYkXQJOeZSig0acrRBqp1HaCKm0iFhFwn5G0gqc2GwR87bpyDAlKlbaTimYbZjJrvSoVqTSijuJw8zt1Yd5M/LFnE0ZxEzlcMkBwZZUrmVupLpBEwWQgYTMcnA7KNvUjV9EX/hLpIW/oiK1ihWcyqKHCM+WMdlsTA1SQW8VjQVIUPAI3bAxj/hNiVgd7spP1FD25VXEl9+GWej6qFtB8j/8r/R1vtnqqu/RXNlKgUlBfj/8x6QZWxXXTmGuAAkJCSwYMECdu3axaFDbRQWQTxJJS8Ja9cCqovnrdlG7xYxWeHLNW344zLzE8x8OS+NZ3qdOKJxsvVaLkt+b5YRWZbZsmULe/ao6swzZ85k3bp1SO+iNtg4/rUxTl7GcdFg1Bi5uuRqri65mkZnI8+efJaXml6ix9/DH4/88aJvT4oLlLZbmNqcgCms3vxkowb9/BKyZxVjz5mFmD4Tprlh6w9h1y9H1u189Gpeu/rnHOo7RIu7hS5fF8qwFWFV/qqRTKwPE06J07013uWST31+zLTrhRdw/fzXiJ/4BJ/48Soe+PabxKMyRnEAYzyAjEBI1KOXozilONvK80EQuMSxExxwIjWBTLebVMWPLIqIsowi+0b6V94lcTkd/piLN/ufJ82Qz8zkldh1qcxKuZTcYiM9GRvQ5/QhDD/P4hGRQL8Ra46fqF+D1qySsTfrp5Fy4nOkL/kB9lQHZTNewTpgZBc3U1s8g03127mKCm7xFfNKVxPt2cU8u/pyclp+ic8cQ+P7K5juBuCVlTdw919+QF9xNp2WAv48+dO03rCbfxuC+FATxFTLxteOPsNUfzd7tTGOFkvsnygwyZFOX3o6ExtUl1Bw9y4sQF3uMiZ27EQYvq40GRlYXxNgBiCECZhu4fnf/wFN1hdItTcz44axGUSnsGjRIqqqqugf8KvkxQ7BY6OZbmH/aEmAc6nrXih+3dZLlSeATSPy+/J8JEHggS5Vt+iO7BQ04ru3PkajUV544QVOnDgBwCWXXMLSpUs/cIvm+wVZjuPs6UYQBJKy3nml73GcH+PkZRzvC0oSS/h2xbf5+uyvs7ltM680v4In4lEJggKyIqOc+qeM/ZSHYzAURUFGHlEFPbWOGFHIaYS8BhF9WL3x+Q0xjhd5OJnrIy41QS1QCxpBQ6G9kImJEylb8lk4+iSvm00cN+jh0G/HjNmqszIxcSJ3zbzrn3qsLgSKooykSb9dplHPf94DQPDoUSS7nZT8m+hLnM6MxINIlzXSP5RMQ/NEyhzDriZBwBIMo5EVXC
Loading
Loading full blame...