Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Nikolai.Hartmann
KerasROOTClassification
Graph
e7a7535161553e2526285ddcc69c9baf1ebf36f4
Select Git revision
Branches
16
always-batch-training
dev-2D-ratio
dev-actmax
dev-adv
dev-balance-dataset
dev-friend
dev-genetic-algorithm
dev-input-transform-plotting
dev-mask
dev-memory
dev-organisation
dev-planing
dev-regression
dev-rnn
dev-score-plot
master
default
16 results
You can move around the graph by using the arrow keys.
Begin with the selected commit
Created with Raphaël 2.2.0
14
Dec
13
5
4
30
Nov
29
28
20
19
15
14
2
1
30
Oct
29
22
21
17
5
19
Sep
12
10
4
3
31
Aug
30
29
28
27
26
24
23
22
21
20
17
16
15
14
13
12
10
9
8
7
6
3
2
31
Jul
30
27
24
23
19
Jun
18
14
13
12
11
8
7
5
17
May
16
15
9
8
7
6
5
4
3
1
30
Apr
29
27
26
fix plot_input for usage with training batches
master
master
fix WeightedRobustScaler
Merge branch 'master' into dev-adv
dev-adv
dev-adv
adding option for leaky relu
make adv learning rate tunable
keyboard interrupt for adversarial training
revert adam optimizer for adversarial to default lr
apply class weights for adversarial targets
adding class_weight_target property
allow arbitrary binning for decorr dist
number of decorr_bins as a parameter
fixing loss plot
adding BaseLogger and History callbacks
ensure fixed number of labels for adv target
name target layers in adversarial setup
use keras callbacks in adversarial training
some fixes
Adversarial setup proof-of-concept
weights and layers
Merge branch 'dev-regression'
starting adversarial setup for decorrelation
add another hidden layer on top of regression targets
dev-regression
dev-regression
adjust compare.py
fixing evaluate_train_test for regression targets
remove duplicate function
transform target for regression
weight individual losses
use mse by default for regression
add regression targets to models
introduce l_train/test to indicate the labels in case of output with regression targets
fill regression targets optionally
fix plot_input for inputs with a single value
add option to plot input variables from batch generator
add mechanism to set number of threads via environment variablel
Merge remote-tracking branch 'origin/master'
option to change default kernel initializer
fixing evaluate_train_test (includes transformation now)
option to ignore negative weight events
improved options for loss and ROC comparison plot
some comments
Loading