Skip to content
Snippets Groups Projects
Commit beea1cfe authored by Nikolai.Hartmann's avatar Nikolai.Hartmann
Browse files

Experimental support for initialising from pandas DataFrame (memory intense ...)

parent 0519ccd8
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/env python
__all__ = ["ClassificationProject"]
__all__ = ["ClassificationProject", "ClassificationProjectDataFrame"]
from sys import version_info
......@@ -1171,9 +1171,12 @@ class ClassificationProject(object):
categories=["background", "signal"]
)
for identifier in self.identifiers:
df[identifier] = np.concatenate([self.s_eventlist_train[identifier],
self.b_eventlist_train[identifier],
-1*np.ones(len(self.x_test), dtype="i8")])
try:
df[identifier] = np.concatenate([self.s_eventlist_train[identifier],
self.b_eventlist_train[identifier],
-1*np.ones(len(self.x_test), dtype="i8")])
except IOError:
logger.warning("Can't find eventlist - DataFrame won't contain identifiers")
df["is_train"] = np.concatenate([np.ones(len(self.x_train), dtype=np.bool),
np.zeros(len(self.x_test), dtype=np.bool)])
return df
......@@ -1204,15 +1207,116 @@ class ClassificationProjectDataFrame(ClassificationProject):
"""
def __init__(self,
name,
df,
input_columns,
weight_column="weights",
label_column="labels",
signal_label="signal",
background_label="background",
split_mode="split_column",
split_colurm="is_train",
split_column="is_train",
**kwargs):
pass
self.df = df
self.input_columns = input_columns
self.weight_column = weight_column
self.label_column = label_column
self.signal_label = signal_label
self.background_label = background_label
if split_mode != "split_column":
raise NotImplementedError("'split_column' is the only currently supported split mode")
self.split_mode = split_mode
self.split_column = split_column
super(ClassificationProjectDataFrame, self).__init__(name,
signal_trees=[], bkg_trees=[], branches=[], weight_expr="1",
**kwargs)
self._x_train = None
self._x_test = None
self._y_train = None
self._y_test = None
self._w_train = None
self._w_test = None
@property
def x_train(self):
if self._x_train is None:
self._x_train = self.df[self.df[self.split_column]][self.input_columns].values
return self._x_train
@x_train.setter
def x_train(self, value):
self._x_train = value
@property
def x_test(self):
if self._x_test is None:
self._x_test = self.df[~self.df[self.split_column]][self.input_columns].values
return self._x_test
@x_test.setter
def x_test(self, value):
self._x_test = value
@property
def y_train(self):
if self._y_train is None:
self._y_train = (self.df[self.df[self.split_column]][self.label_column] == self.signal_label).values
return self._y_train
@y_train.setter
def y_train(self, value):
self._y_train = value
@property
def y_test(self):
if self._y_test is None:
self._y_test = (self.df[~self.df[self.split_column]][self.label_column] == self.signal_label).values
return self._y_test
@y_test.setter
def y_test(self, value):
self._y_test = value
@property
def w_train(self):
if self._w_train is None:
self._w_train = self.df[self.df[self.split_column]][self.weight_column].values
return self._w_train
@w_train.setter
def w_train(self, value):
self._w_train = value
@property
def w_test(self):
if self._w_test is None:
self._w_test = self.df[~self.df[self.split_column]][self.weight_column].values
return self._w_test
@w_test.setter
def w_test(self, value):
self._w_test = value
@property
def fields(self):
return self.input_columns
def load(self, reload=False):
if reload:
self.data_loaded = False
self.data_transformed = False
self._x_train = None
self._x_test = None
self._y_train = None
self._y_test = None
self._w_train = None
self._w_test = None
if not self.data_transformed:
self._transform_data()
if __name__ == "__main__":
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment