Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Nikolai.Hartmann
KerasROOTClassification
Commits
5c7cd191
Commit
5c7cd191
authored
6 years ago
by
Nikolai
Browse files
Options
Downloads
Patches
Plain Diff
model checkpoint options
option to set modelcheckpoint options
parent
6300dafe
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
toolkit.py
+29
-14
29 additions, 14 deletions
toolkit.py
with
29 additions
and
14 deletions
toolkit.py
+
29
−
14
View file @
5c7cd191
...
@@ -15,6 +15,8 @@ import pickle
...
@@ -15,6 +15,8 @@ import pickle
import
importlib
import
importlib
import
csv
import
csv
import
math
import
math
import
glob
import
shutil
import
logging
import
logging
logger
=
logging
.
getLogger
(
"
KerasROOTClassification
"
)
logger
=
logging
.
getLogger
(
"
KerasROOTClassification
"
)
...
@@ -134,6 +136,8 @@ class ClassificationProject(object):
...
@@ -134,6 +136,8 @@ class ClassificationProject(object):
:param use_modelcheckpoint: save model weights after each epoch and don
'
t save after no validation loss improvement
:param use_modelcheckpoint: save model weights after each epoch and don
'
t save after no validation loss improvement
:param modelcheckpoint_opts: options for the Keras ModelCheckpoint callback
:param balance_dataset: if True, balance the dataset instead of
:param balance_dataset: if True, balance the dataset instead of
applying class weights. Only a fraction of the overrepresented
applying class weights. Only a fraction of the overrepresented
class will be used in each epoch, but different subsets of the
class will be used in each epoch, but different subsets of the
...
@@ -159,7 +163,7 @@ class ClassificationProject(object):
...
@@ -159,7 +163,7 @@ class ClassificationProject(object):
else
:
else
:
# otherwise initialise new project
# otherwise initialise new project
self
.
_init_from_args
(
name
,
*
args
,
**
kwargs
)
self
.
_init_from_args
(
name
,
*
args
,
**
kwargs
)
with
open
(
os
.
path
.
join
(
self
.
project_dir
,
"
options.pickle
"
),
"
w
"
)
as
of
:
with
open
(
os
.
path
.
join
(
self
.
project_dir
,
"
options.pickle
"
),
"
w
b
"
)
as
of
:
pickle
.
dump
(
dict
(
args
=
args
,
kwargs
=
kwargs
),
of
)
pickle
.
dump
(
dict
(
args
=
args
,
kwargs
=
kwargs
),
of
)
...
@@ -169,7 +173,7 @@ class ClassificationProject(object):
...
@@ -169,7 +173,7 @@ class ClassificationProject(object):
with
open
(
os
.
path
.
join
(
dirname
,
"
options.json
"
))
as
f
:
with
open
(
os
.
path
.
join
(
dirname
,
"
options.json
"
))
as
f
:
options
=
byteify
(
json
.
load
(
f
))
options
=
byteify
(
json
.
load
(
f
))
else
:
else
:
with
open
(
os
.
path
.
join
(
dirname
,
"
options.pickle
"
))
as
f
:
with
open
(
os
.
path
.
join
(
dirname
,
"
options.pickle
"
)
,
"
rb
"
)
as
f
:
options
=
pickle
.
load
(
f
)
options
=
pickle
.
load
(
f
)
options
[
"
kwargs
"
][
"
project_dir
"
]
=
dirname
options
[
"
kwargs
"
][
"
project_dir
"
]
=
dirname
self
.
_init_from_args
(
os
.
path
.
basename
(
dirname
),
*
options
[
"
args
"
],
**
options
[
"
kwargs
"
])
self
.
_init_from_args
(
os
.
path
.
basename
(
dirname
),
*
options
[
"
args
"
],
**
options
[
"
kwargs
"
])
...
@@ -177,6 +181,7 @@ class ClassificationProject(object):
...
@@ -177,6 +181,7 @@ class ClassificationProject(object):
def
_init_from_args
(
self
,
name
,
def
_init_from_args
(
self
,
name
,
signal_trees
,
bkg_trees
,
branches
,
weight_expr
,
signal_trees
,
bkg_trees
,
branches
,
weight_expr
,
project_dir
=
None
,
data_dir
=
None
,
data_dir
=
None
,
identifiers
=
None
,
identifiers
=
None
,
selection
=
None
,
selection
=
None
,
...
@@ -187,7 +192,6 @@ class ClassificationProject(object):
...
@@ -187,7 +192,6 @@ class ClassificationProject(object):
validation_split
=
0.33
,
validation_split
=
0.33
,
activation_function
=
'
relu
'
,
activation_function
=
'
relu
'
,
activation_function_output
=
'
sigmoid
'
,
activation_function_output
=
'
sigmoid
'
,
project_dir
=
None
,
scaler_type
=
"
RobustScaler
"
,
scaler_type
=
"
RobustScaler
"
,
step_signal
=
2
,
step_signal
=
2
,
step_bkg
=
2
,
step_bkg
=
2
,
...
@@ -196,6 +200,7 @@ class ClassificationProject(object):
...
@@ -196,6 +200,7 @@ class ClassificationProject(object):
use_earlystopping
=
True
,
use_earlystopping
=
True
,
earlystopping_opts
=
None
,
earlystopping_opts
=
None
,
use_modelcheckpoint
=
True
,
use_modelcheckpoint
=
True
,
modelcheckpoint_opts
=
None
,
random_seed
=
1234
,
random_seed
=
1234
,
balance_dataset
=
False
):
balance_dataset
=
False
):
...
@@ -205,6 +210,14 @@ class ClassificationProject(object):
...
@@ -205,6 +210,14 @@ class ClassificationProject(object):
self
.
branches
=
branches
self
.
branches
=
branches
self
.
weight_expr
=
weight_expr
self
.
weight_expr
=
weight_expr
self
.
selection
=
selection
self
.
selection
=
selection
self
.
project_dir
=
project_dir
if
self
.
project_dir
is
None
:
self
.
project_dir
=
name
if
not
os
.
path
.
exists
(
self
.
project_dir
):
os
.
mkdir
(
self
.
project_dir
)
self
.
data_dir
=
data_dir
self
.
data_dir
=
data_dir
if
identifiers
is
None
:
if
identifiers
is
None
:
identifiers
=
[]
identifiers
=
[]
...
@@ -228,16 +241,16 @@ class ClassificationProject(object):
...
@@ -228,16 +241,16 @@ class ClassificationProject(object):
if
earlystopping_opts
is
None
:
if
earlystopping_opts
is
None
:
earlystopping_opts
=
dict
()
earlystopping_opts
=
dict
()
self
.
earlystopping_opts
=
earlystopping_opts
self
.
earlystopping_opts
=
earlystopping_opts
if
modelcheckpoint_opts
is
None
:
modelcheckpoint_opts
=
dict
(
save_best_only
=
True
,
verbose
=
True
,
filepath
=
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
)
)
self
.
modelcheckpoint_opts
=
modelcheckpoint_opts
self
.
random_seed
=
random_seed
self
.
random_seed
=
random_seed
self
.
balance_dataset
=
balance_dataset
self
.
balance_dataset
=
balance_dataset
self
.
project_dir
=
project_dir
if
self
.
project_dir
is
None
:
self
.
project_dir
=
name
if
not
os
.
path
.
exists
(
self
.
project_dir
):
os
.
mkdir
(
self
.
project_dir
)
self
.
s_train
=
None
self
.
s_train
=
None
self
.
b_train
=
None
self
.
b_train
=
None
self
.
s_test
=
None
self
.
s_test
=
None
...
@@ -411,9 +424,7 @@ class ClassificationProject(object):
...
@@ -411,9 +424,7 @@ class ClassificationProject(object):
if
self
.
use_earlystopping
:
if
self
.
use_earlystopping
:
self
.
_callbacks_list
.
append
(
EarlyStopping
(
**
self
.
earlystopping_opts
))
self
.
_callbacks_list
.
append
(
EarlyStopping
(
**
self
.
earlystopping_opts
))
if
self
.
use_modelcheckpoint
:
if
self
.
use_modelcheckpoint
:
self
.
_callbacks_list
.
append
(
ModelCheckpoint
(
save_best_only
=
True
,
self
.
_callbacks_list
.
append
(
ModelCheckpoint
(
**
self
.
modelcheckpoint_opts
))
verbose
=
True
,
filepath
=
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
)))
self
.
_callbacks_list
.
append
(
CSVLogger
(
os
.
path
.
join
(
self
.
project_dir
,
"
training.log
"
),
append
=
True
))
self
.
_callbacks_list
.
append
(
CSVLogger
(
os
.
path
.
join
(
self
.
project_dir
,
"
training.log
"
),
append
=
True
))
return
self
.
_callbacks_list
return
self
.
_callbacks_list
...
@@ -728,8 +739,12 @@ class ClassificationProject(object):
...
@@ -728,8 +739,12 @@ class ClassificationProject(object):
logger
.
info
(
"
Save weights
"
)
logger
.
info
(
"
Save weights
"
)
self
.
model
.
save_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
self
.
model
.
save_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
else
:
else
:
weight_file
=
sorted
(
glob
.
glob
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights*.h5
"
)),
key
=
lambda
f
:
os
.
path
.
getmtime
(
f
))[
-
1
]
if
not
os
.
path
.
basename
(
weight_file
)
==
"
weights.h5
"
:
logger
.
info
(
"
Copying latest weight file {} to weights.h5
"
.
format
(
weight_file
))
shutil
.
copy
(
weight_file
,
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
logger
.
info
(
"
Reloading weights file since we are using model checkpoint!
"
)
self
.
model
.
load_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
self
.
model
.
load_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
logger
.
info
(
"
Reloading weights, since we are using model checkpoint!
"
)
self
.
total_epochs
+=
epochs
self
.
total_epochs
+=
epochs
self
.
_write_info
(
"
epochs
"
,
self
.
total_epochs
)
self
.
_write_info
(
"
epochs
"
,
self
.
total_epochs
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment