Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Nikolai.Hartmann
KerasROOTClassification
Commits
5119a79d
Commit
5119a79d
authored
6 years ago
by
Nikolai.Hartmann
Browse files
Options
Downloads
Patches
Plain Diff
adjust max activation functions to use masking
parent
4f02d77d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
utils.py
+12
-5
12 additions, 5 deletions
utils.py
with
12 additions
and
5 deletions
utils.py
+
12
−
5
View file @
5119a79d
...
@@ -38,6 +38,8 @@ def create_random_event(ranges, mask_probs=None, mask_value=None):
...
@@ -38,6 +38,8 @@ def create_random_event(ranges, mask_probs=None, mask_value=None):
random_event
=
random_event
.
reshape
(
-
1
,
len
(
random_event
))
random_event
=
random_event
.
reshape
(
-
1
,
len
(
random_event
))
# if given, mask values with a certain probability
# if given, mask values with a certain probability
if
mask_probs
is
not
None
:
if
mask_probs
is
not
None
:
if
mask_value
is
None
:
raise
ValueError
(
"
Need to provide mask_value if random events should be masked
"
)
for
var_index
,
mask_prob
in
enumerate
(
mask_probs
):
for
var_index
,
mask_prob
in
enumerate
(
mask_probs
):
random_event
[:,
var_index
][
np
.
random
.
rand
(
len
(
random_event
))
<
mask_prob
]
=
mask_value
random_event
[:,
var_index
][
np
.
random
.
rand
(
len
(
random_event
))
<
mask_prob
]
=
mask_value
return
random_event
return
random_event
...
@@ -122,7 +124,7 @@ def get_grad_function(model, layer, neuron):
...
@@ -122,7 +124,7 @@ def get_grad_function(model, layer, neuron):
],
],
ignoreKwargs
=
[
"
input_transform
"
,
"
input_inverse_transform
"
],
ignoreKwargs
=
[
"
input_transform
"
,
"
input_inverse_transform
"
],
)
)
def
get_max_activation_events
(
model
,
ranges
,
ntries
,
layer
,
neuron
,
seed
=
42
,
**
kwargs
):
def
get_max_activation_events
(
model
,
ranges
,
ntries
,
layer
,
neuron
,
seed
=
42
,
mask_probs
=
None
,
mask_value
=
None
,
**
kwargs
):
gradient_function
=
get_grad_function
(
model
,
layer
,
neuron
)
gradient_function
=
get_grad_function
(
model
,
layer
,
neuron
)
...
@@ -132,9 +134,15 @@ def get_max_activation_events(model, ranges, ntries, layer, neuron, seed=42, **k
...
@@ -132,9 +134,15 @@ def get_max_activation_events(model, ranges, ntries, layer, neuron, seed=42, **k
for
i
in
range
(
ntries
):
for
i
in
range
(
ntries
):
if
not
(
i
%
100
):
if
not
(
i
%
100
):
logger
.
info
(
i
)
logger
.
info
(
i
)
res
=
max_activation_wrt_input
(
gradient_function
,
res
=
max_activation_wrt_input
(
create_random_event
(
ranges
),
gradient_function
,
**
kwargs
)
create_random_event
(
ranges
,
mask_probs
=
mask_probs
,
mask_value
=
mask_value
),
**
kwargs
)
if
res
is
not
None
:
if
res
is
not
None
:
loss
,
event
=
res
loss
,
event
=
res
loss
=
np
.
array
([
loss
])
loss
=
np
.
array
([
loss
])
...
@@ -195,7 +203,6 @@ class WeightedRobustScaler(RobustScaler):
...
@@ -195,7 +203,6 @@ class WeightedRobustScaler(RobustScaler):
self
.
center_
=
wqs
[:,
1
]
self
.
center_
=
wqs
[:,
1
]
self
.
scale_
=
wqs
[:,
2
]
-
wqs
[:,
0
]
self
.
scale_
=
wqs
[:,
2
]
-
wqs
[:,
0
]
self
.
scale_
=
_handle_zeros_in_scale
(
self
.
scale_
,
copy
=
False
)
self
.
scale_
=
_handle_zeros_in_scale
(
self
.
scale_
,
copy
=
False
)
print
(
self
.
scale_
)
return
self
return
self
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment