Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Nikolai.Hartmann
KerasROOTClassification
Commits
1f5ff1b3
Commit
1f5ff1b3
authored
6 years ago
by
Nikolai
Browse files
Options
Downloads
Patches
Plain Diff
staring eval_model script
parent
f3ce92d9
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scripts/eval_model.py
+50
-0
50 additions, 0 deletions
scripts/eval_model.py
with
50 additions
and
0 deletions
scripts/eval_model.py
0 → 100755
+
50
−
0
View file @
1f5ff1b3
#!/usr/bin/env python
import
os
import
argparse
import
keras
import
h5py
from
sklearn.metrics
import
roc_curve
,
auc
import
matplotlib.pyplot
as
plt
import
numpy
as
np
from
KerasROOTClassification
import
ClassificationProject
parser
=
argparse
.
ArgumentParser
(
description
=
'
Evaluate a model from a classification project using the given
'
'
weights and plot the ROC curve and train/test overlayed scores
'
)
parser
.
add_argument
(
"
project_dir
"
)
parser
.
add_argument
(
"
weights
"
)
parser
.
add_argument
(
"
-p
"
,
"
--plot-prefix
"
,
default
=
"
eval_nn
"
)
args
=
parser
.
parse_args
()
c
=
ClassificationProject
(
args
.
project_dir
)
c
.
model
.
load_weights
(
args
.
weights
)
print
(
"
Predicting for test sample ...
"
)
scores_test
=
c
.
evaluate
(
c
.
x_test
)
print
(
"
Done
"
)
fpr
,
tpr
,
threshold
=
roc_curve
(
c
.
y_test
,
scores_test
,
sample_weight
=
c
.
w_test
)
fpr
=
1.0
-
fpr
try
:
roc_auc
=
auc
(
tpr
,
fpr
,
reorder
=
True
)
except
ValueError
:
logger
.
warning
(
"
Got a value error from auc - trying to rerun with reorder=True
"
)
roc_auc
=
auc
(
tpr
,
fpr
,
reorder
=
True
)
plt
.
grid
(
color
=
'
gray
'
,
linestyle
=
'
--
'
,
linewidth
=
1
)
plt
.
plot
(
tpr
,
fpr
,
label
=
str
(
c
.
name
+
"
(AUC = {})
"
.
format
(
roc_auc
)))
plt
.
plot
([
0
,
1
],[
1
,
0
],
linestyle
=
'
--
'
,
color
=
'
black
'
,
label
=
'
Luck
'
)
plt
.
ylabel
(
"
Background rejection
"
)
plt
.
xlabel
(
"
Signal efficiency
"
)
plt
.
title
(
'
Receiver operating characteristic
'
)
plt
.
xlim
(
0
,
1
)
plt
.
ylim
(
0
,
1
)
plt
.
xticks
(
np
.
arange
(
0
,
1
,
0.1
))
plt
.
yticks
(
np
.
arange
(
0
,
1
,
0.1
))
plt
.
legend
(
loc
=
'
lower left
'
,
framealpha
=
1.0
)
plt
.
savefig
(
args
.
plot_prefix
+
"
_ROC.pdf
"
)
plt
.
clf
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment