Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
ce7b4c4f
Commit
ce7b4c4f
authored
6 years ago
by
Nikolai
Browse files
Options
Downloads
Patches
Plain Diff
correct project dir initialisation and csvlogger
parent
81dfd04c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
toolkit.py
+52
-22
52 additions, 22 deletions
toolkit.py
with
52 additions
and
22 deletions
toolkit.py
+
52
−
22
View file @
ce7b4c4f
...
...
@@ -4,6 +4,7 @@ import os
import
json
import
pickle
import
importlib
import
csv
import
logging
logger
=
logging
.
getLogger
(
"
KerasROOTClassification
"
)
...
...
@@ -20,7 +21,7 @@ from sklearn.metrics import roc_curve, auc
from
keras.models
import
Sequential
from
keras.layers
import
Dense
from
keras.models
import
model_from_json
from
keras.callbacks
import
History
,
EarlyStopping
from
keras.callbacks
import
History
,
EarlyStopping
,
CSVLogger
from
keras.optimizers
import
SGD
import
keras.optimizers
...
...
@@ -121,6 +122,7 @@ class KerasROOTClassification(object):
def
_init_from_dir
(
self
,
dirname
):
with
open
(
os
.
path
.
join
(
dirname
,
"
options.json
"
))
as
f
:
options
=
json
.
load
(
f
)
options
[
"
kwargs
"
][
"
project_dir
"
]
=
dirname
self
.
_init_from_args
(
os
.
path
.
basename
(
dirname
),
*
options
[
"
args
"
],
**
options
[
"
kwargs
"
])
...
...
@@ -132,7 +134,7 @@ class KerasROOTClassification(object):
batch_size
=
128
,
validation_split
=
0.33
,
activation_function
=
'
relu
'
,
out_dir
=
"
./outputs
"
,
project_dir
=
None
,
scaler_type
=
"
RobustScaler
"
,
step_signal
=
2
,
step_bkg
=
2
,
...
...
@@ -153,7 +155,6 @@ class KerasROOTClassification(object):
self
.
batch_size
=
batch_size
self
.
validation_split
=
validation_split
self
.
activation_function
=
activation_function
self
.
out_dir
=
out_dir
self
.
scaler_type
=
scaler_type
self
.
step_signal
=
step_signal
self
.
step_bkg
=
step_bkg
...
...
@@ -165,10 +166,9 @@ class KerasROOTClassification(object):
earlystopping_opts
=
dict
()
self
.
earlystopping_opts
=
earlystopping_opts
self
.
project_dir
=
os
.
path
.
join
(
self
.
out_dir
,
name
)
if
not
os
.
path
.
exists
(
self
.
out_dir
):
os
.
mkdir
(
self
.
out_dir
)
self
.
project_dir
=
project_dir
if
self
.
project_dir
is
None
:
self
.
project_dir
=
name
if
not
os
.
path
.
exists
(
self
.
project_dir
):
os
.
mkdir
(
self
.
project_dir
)
...
...
@@ -330,10 +330,10 @@ class KerasROOTClassification(object):
@property
def
callbacks_list
(
self
):
if
not
self
.
_callbacks_list
:
self
.
_callbacks_list
.
append
(
self
.
history
)
self
.
_callbacks_list
.
append
(
EarlyStopping
(
**
self
.
earlystopping_opts
))
self
.
_callbacks_list
=
[]
self
.
_callbacks_list
.
append
(
self
.
history
)
self
.
_callbacks_list
.
append
(
EarlyStopping
(
**
self
.
earlystopping_opts
))
self
.
_callbacks_list
.
append
(
CSVLogger
(
os
.
path
.
join
(
self
.
project_dir
,
"
training.log
"
),
append
=
True
))
return
self
.
_callbacks_list
...
...
@@ -369,10 +369,11 @@ class KerasROOTClassification(object):
history_file
=
os
.
path
.
join
(
self
.
project_dir
,
"
history_history.json
"
)
if
self
.
_history
is
None
:
self
.
_history
=
History
()
with
open
(
params_file
)
as
f
:
self
.
_history
.
params
=
json
.
load
(
f
)
with
open
(
history_file
)
as
f
:
self
.
_history
.
history
=
json
.
load
(
f
)
if
os
.
path
.
exists
(
params_file
)
and
os
.
path
.
exists
(
history_file
):
with
open
(
params_file
)
as
f
:
self
.
_history
.
params
=
json
.
load
(
f
)
with
open
(
history_file
)
as
f
:
self
.
_history
.
history
=
json
.
load
(
f
)
return
self
.
_history
...
...
@@ -502,7 +503,6 @@ class KerasROOTClassification(object):
logger
.
info
(
"
Train model
"
)
try
:
self
.
history
=
History
()
self
.
shuffle_training_data
()
self
.
model
.
fit
(
self
.
x_train
,
# the reshape might be unnescessary here
...
...
@@ -684,11 +684,31 @@ class KerasROOTClassification(object):
pass
def
plot_loss
(
self
):
@property
def
csv_hist
(
self
):
with
open
(
os
.
path
.
join
(
self
.
project_dir
,
"
training.log
"
))
as
f
:
reader
=
csv
.
reader
(
f
)
history_list
=
list
(
reader
)
hist_dict
=
{}
for
hist_key_index
,
hist_key
in
enumerate
(
history_list
[
0
]):
hist_dict
[
hist_key
]
=
[
float
(
line
[
hist_key_index
])
for
line
in
history_list
[
1
:]]
return
hist_dict
def
plot_loss
(
self
,
all_trainings
=
False
):
"""
Plot the value of the loss function for each epoch
:param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used)
"""
if
all_trainings
:
hist_dict
=
self
.
csv_hist
else
:
hist_dict
=
self
.
history
.
history
logger
.
info
(
"
Plot losses
"
)
plt
.
plot
(
self
.
history
.
history
[
'
loss
'
])
plt
.
plot
(
self
.
history
.
history
[
'
val_loss
'
])
plt
.
plot
(
hist_dict
[
'
loss
'
])
plt
.
plot
(
hist_dict
[
'
val_loss
'
])
plt
.
ylabel
(
'
loss
'
)
plt
.
xlabel
(
'
epoch
'
)
plt
.
legend
([
'
train
'
,
'
test
'
],
loc
=
'
upper left
'
)
...
...
@@ -696,11 +716,21 @@ class KerasROOTClassification(object):
plt
.
clf
()
def
plot_accuracy
(
self
):
def
plot_accuracy
(
self
,
all_trainings
=
False
):
"""
Plot the value of the accuracy metric for each epoch
:param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used)
"""
if
all_trainings
:
hist_dict
=
self
.
csv_hist
else
:
hist_dict
=
self
.
history
.
history
logger
.
info
(
"
Plot accuracy
"
)
plt
.
plot
(
self
.
history
.
history
[
'
acc
'
])
plt
.
plot
(
self
.
history
.
history
[
'
val_acc
'
])
plt
.
plot
(
hist_dict
[
'
acc
'
])
plt
.
plot
(
hist_dict
[
'
val_acc
'
])
plt
.
title
(
'
model accuracy
'
)
plt
.
ylabel
(
'
accuracy
'
)
plt
.
xlabel
(
'
epoch
'
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment