Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
b8017999
Commit
b8017999
authored
6 years ago
by
Nikolai.Hartmann
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' into dev-organisation
parents
cc9ee035
a35af907
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
toolkit.py
+60
-41
60 additions, 41 deletions
toolkit.py
with
60 additions
and
41 deletions
toolkit.py
+
60
−
41
View file @
b8017999
...
...
@@ -198,8 +198,6 @@ class ClassificationProject(object):
self
.
_scaler
=
None
self
.
_class_weight
=
None
self
.
_bkg_weights
=
None
self
.
_sig_weights
=
None
self
.
_model
=
None
self
.
_history
=
None
self
.
_callbacks_list
=
[]
...
...
@@ -476,8 +474,13 @@ class ClassificationProject(object):
return
self
.
_class_weight
def
load
(
self
):
def
load
(
self
,
reload
=
False
):
"
Load all data needed for plotting and training
"
if
reload
:
self
.
data_loaded
=
False
self
.
data_transformed
=
False
if
not
self
.
data_loaded
:
self
.
_load_data
()
...
...
@@ -492,9 +495,10 @@ class ClassificationProject(object):
np
.
random
.
shuffle
(
self
.
y_train
)
np
.
random
.
set_state
(
rn_state
)
np
.
random
.
shuffle
(
self
.
w_train
)
if
self
.
_scores_test
is
not
None
:
if
self
.
_scores_train
is
not
None
:
logger
.
info
(
"
Shuffling scores, since they are also there
"
)
np
.
random
.
set_state
(
rn_state
)
np
.
random
.
shuffle
(
self
.
_scores_t
est
)
np
.
random
.
shuffle
(
self
.
_scores_t
rain
)
def
train
(
self
,
epochs
=
10
):
...
...
@@ -531,12 +535,18 @@ class ClassificationProject(object):
self
.
total_epochs
+=
epochs
self
.
_write_info
(
"
epochs
"
,
self
.
total_epochs
)
logger
.
info
(
"
Reloading (and re-transforming) unshuffled training data
"
)
self
.
load
(
reload
=
True
)
logger
.
info
(
"
Create/Update scores for ROC curve
"
)
self
.
scores_test
=
self
.
model
.
predict
(
self
.
x_test
)
self
.
scores_train
=
self
.
model
.
predict
(
self
.
x_train
)
self
.
_dump_to_hdf5
(
"
scores_train
"
,
"
scores_test
"
)
logger
.
info
(
"
Creating all validation plots
"
)
self
.
plot_all
()
def
evaluate
(
self
,
x_eval
):
...
...
@@ -587,34 +597,13 @@ class ClassificationProject(object):
pass
@property
def
bkg_weights
(
self
):
"""
class weights multiplied by event weights (for plotting)
TODO: find a better way to do this
"""
if
self
.
_bkg_weights
is
None
:
logger
.
debug
(
"
Calculating background weights for plotting
"
)
self
.
_bkg_weights
=
np
.
empty
(
sum
(
self
.
y_train
==
0
))
self
.
_bkg_weights
.
fill
(
self
.
class_weight
[
0
])
self
.
_bkg_weights
*=
self
.
w_train
[
self
.
y_train
==
0
]
logger
.
debug
(
"
Background weights: {}
"
.
format
(
self
.
_bkg_weights
))
return
self
.
_bkg_weights
@property
def
sig_weights
(
self
):
"""
class weights multiplied by event weights (for plotting)
TODO: find a better way to do this
"""
if
self
.
_sig_weights
is
None
:
logger
.
debug
(
"
Calculating signal weights for plotting
"
)
self
.
_sig_weights
=
np
.
empty
(
sum
(
self
.
y_train
==
1
))
self
.
_sig_weights
.
fill
(
self
.
class_weight
[
1
])
self
.
_sig_weights
*=
self
.
w_train
[
self
.
y_train
==
1
]
logger
.
debug
(
"
Signal weights: {}
"
.
format
(
self
.
_sig_weights
))
return
self
.
_sig_weights
@staticmethod
def
get_bin_centered_hist
(
x
,
scale_factor
=
None
,
**
np_kwargs
):
hist
,
bins
=
np
.
histogram
(
x
,
**
np_kwargs
)
centers
=
(
bins
[:
-
1
]
+
bins
[
1
:])
/
2
if
scale_factor
is
not
None
:
hist
*=
scale_factor
return
centers
,
hist
def
plot_input
(
self
,
var_index
):
...
...
@@ -623,6 +612,8 @@ class ClassificationProject(object):
fig
,
ax
=
plt
.
subplots
()
bkg
=
self
.
x_train
[:,
var_index
][
self
.
y_train
==
0
]
sig
=
self
.
x_train
[:,
var_index
][
self
.
y_train
==
1
]
bkg_weights
=
self
.
w_train
[
self
.
y_train
==
0
]
sig_weights
=
self
.
w_train
[
self
.
y_train
==
1
]
logger
.
debug
(
"
Plotting bkg (min={}, max={}) from {}
"
.
format
(
np
.
min
(
bkg
),
np
.
max
(
bkg
),
bkg
))
logger
.
debug
(
"
Plotting sig (min={}, max={}) from {}
"
.
format
(
np
.
min
(
sig
),
np
.
max
(
sig
),
sig
))
...
...
@@ -636,14 +627,19 @@ class ClassificationProject(object):
logger
.
debug
(
"
Calculated range based on percentiles: {}
"
.
format
(
plot_range
))
try
:
ax
.
hist
(
bk
g
,
color
=
"
b
"
,
alpha
=
0.5
,
bins
=
50
,
range
=
plot_range
,
weights
=
s
elf
.
bk
g_weights
)
ax
.
hist
(
si
g
,
color
=
"
r
"
,
alpha
=
0.5
,
bins
=
50
,
range
=
plot_range
,
weights
=
self
.
si
g_weights
)
centers_sig
,
hist_sig
=
self
.
get_bin_centered_
hist
(
si
g
,
scale_factor
=
self
.
class_weight
[
1
]
,
bins
=
50
,
range
=
plot_range
,
weights
=
s
i
g_weights
)
centers_bkg
,
hist_bkg
=
self
.
get_bin_centered_
hist
(
bk
g
,
scale_factor
=
self
.
class_weight
[
0
]
,
bins
=
50
,
range
=
plot_range
,
weights
=
bk
g_weights
)
except
ValueError
:
# weird, probably not always working workaround for a numpy bug
plot_range
=
(
float
(
"
{:.2f}
"
.
format
(
plot_range
[
0
])),
float
(
"
{:.2f}
"
.
format
(
plot_range
[
1
])))
logger
.
warn
(
"
Got a value error during plotting, maybe this is due to a numpy bug - changing range to {}
"
.
format
(
plot_range
))
ax
.
hist
(
bkg
,
color
=
"
b
"
,
alpha
=
0.5
,
bins
=
50
,
range
=
plot_range
,
weights
=
self
.
bkg_weights
)
ax
.
hist
(
sig
,
color
=
"
r
"
,
alpha
=
0.5
,
bins
=
50
,
range
=
plot_range
,
weights
=
self
.
sig_weights
)
centers_sig
,
hist_sig
=
self
.
get_bin_centered_hist
(
sig
,
scale_factor
=
self
.
class_weight
[
1
],
bins
=
50
,
range
=
plot_range
,
weights
=
sig_weights
)
centers_bkg
,
hist_bkg
=
self
.
get_bin_centered_hist
(
bkg
,
scale_factor
=
self
.
class_weight
[
0
],
bins
=
50
,
range
=
plot_range
,
weights
=
bkg_weights
)
width
=
centers_sig
[
1
]
-
centers_sig
[
0
]
ax
.
bar
(
centers_bkg
,
hist_bkg
,
color
=
"
b
"
,
alpha
=
0.5
,
width
=
width
)
ax
.
bar
(
centers_sig
,
hist_sig
,
color
=
"
r
"
,
alpha
=
0.5
,
width
=
width
)
ax
.
set_xlabel
(
branch
+
"
(transformed)
"
)
plot_dir
=
os
.
path
.
join
(
self
.
project_dir
,
"
plots
"
)
if
not
os
.
path
.
exists
(
plot_dir
):
...
...
@@ -685,8 +681,24 @@ class ClassificationProject(object):
plt
.
savefig
(
os
.
path
.
join
(
self
.
project_dir
,
"
ROC.pdf
"
))
plt
.
clf
()
def
plot_score
(
self
):
pass
plot_opts
=
dict
(
bins
=
50
,
range
=
(
0
,
1
))
centers_sig_train
,
hist_sig_train
=
self
.
get_bin_centered_hist
(
self
.
scores_train
[
self
.
y_train
==
1
].
reshape
(
-
1
),
density
=
True
,
weights
=
self
.
w_train
[
self
.
y_train
==
1
],
**
plot_opts
)
centers_bkg_train
,
hist_bkg_train
=
self
.
get_bin_centered_hist
(
self
.
scores_train
[
self
.
y_train
==
0
].
reshape
(
-
1
),
density
=
True
,
weights
=
self
.
w_train
[
self
.
y_train
==
0
],
**
plot_opts
)
centers_sig_test
,
hist_sig_test
=
self
.
get_bin_centered_hist
(
self
.
scores_test
[
self
.
y_test
==
1
].
reshape
(
-
1
),
density
=
True
,
weights
=
self
.
w_test
[
self
.
y_test
==
1
],
**
plot_opts
)
centers_bkg_test
,
hist_bkg_test
=
self
.
get_bin_centered_hist
(
self
.
scores_test
[
self
.
y_test
==
0
].
reshape
(
-
1
),
density
=
True
,
weights
=
self
.
w_test
[
self
.
y_test
==
0
],
**
plot_opts
)
fig
,
ax
=
plt
.
subplots
()
width
=
centers_sig_train
[
1
]
-
centers_sig_train
[
0
]
ax
.
bar
(
centers_bkg_train
,
hist_bkg_train
,
color
=
"
b
"
,
alpha
=
0.5
,
width
=
width
,
label
=
"
background train
"
)
ax
.
bar
(
centers_sig_train
,
hist_sig_train
,
color
=
"
r
"
,
alpha
=
0.5
,
width
=
width
,
label
=
"
signal train
"
)
ax
.
scatter
(
centers_bkg_test
,
hist_bkg_test
,
color
=
"
b
"
,
label
=
"
background test
"
)
ax
.
scatter
(
centers_sig_test
,
hist_sig_test
,
color
=
"
r
"
,
label
=
"
signal test
"
)
ax
.
set_yscale
(
"
log
"
)
ax
.
set_xlabel
(
"
NN output
"
)
plt
.
legend
(
loc
=
'
upper right
'
,
framealpha
=
1.0
)
fig
.
savefig
(
os
.
path
.
join
(
self
.
project_dir
,
"
scores.pdf
"
))
@property
...
...
@@ -743,6 +755,15 @@ class ClassificationProject(object):
plt
.
savefig
(
os
.
path
.
join
(
self
.
project_dir
,
"
accuracy.pdf
"
))
plt
.
clf
()
def
plot_all
(
self
):
self
.
plot_ROC
()
self
.
plot_accuracy
()
self
.
plot_loss
()
self
.
plot_score
()
self
.
plot_weights
()
def
create_getter
(
dataset_name
):
def
getx
(
self
):
if
getattr
(
self
,
"
_
"
+
dataset_name
)
is
None
:
...
...
@@ -789,9 +810,7 @@ if __name__ == "__main__":
np
.
random
.
seed
(
42
)
c
.
train
(
epochs
=
20
)
c
.
plot_ROC
()
c
.
plot_loss
()
c
.
plot_accuracy
()
#c.plot_all()
# c.write_friend_tree("test4_score",
# source_filename=filename, source_treename="GG_oneStep_1705_1105_505_NoSys",
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment