Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
a95d7482
Commit
a95d7482
authored
6 years ago
by
Nikolai
Browse files
Options
Downloads
Patches
Plain Diff
profile histogram plot
parent
b9f44b75
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
plotting.py
+179
-98
179 additions, 98 deletions
plotting.py
with
179 additions
and
98 deletions
plotting.py
+
179
−
98
View file @
a95d7482
...
@@ -273,117 +273,198 @@ def plot_cond_avg_actmax_2D(plotname, model, layer, neuron, ranges,
...
@@ -273,117 +273,198 @@ def plot_cond_avg_actmax_2D(plotname, model, layer, neuron, ranges,
plot_hist_2D
(
plotname
,
xedges
,
yedges
,
hist
,
zlabel
=
"
Neuron output
"
,
**
kwargs
)
plot_hist_2D
(
plotname
,
xedges
,
yedges
,
hist
,
zlabel
=
"
Neuron output
"
,
**
kwargs
)
def
plot_profile_2D
(
plotname
,
valsx
,
valsy
,
scores
,
nbinsx
,
xmin
,
xmax
,
nbinsy
,
ymin
,
ymax
,
metric
=
np
.
mean
,
**
kwargs
):
kwargs
[
"
zlabel
"
]
=
kwargs
.
get
(
"
zlabel
"
,
"
Profile
"
)
if
__name__
==
"
__main__
"
:
xedges
=
np
.
linspace
(
xmin
,
xmax
,
nbinsx
)
yedges
=
np
.
linspace
(
ymin
,
ymax
,
nbinsy
)
from
.toolkit
import
ClassificationProject
c
=
ClassificationProject
(
os
.
path
.
expanduser
(
"
~/p/scripts/keras/008-allhighlevel/all_highlevel_985
"
))
binindices_x
=
np
.
digitize
(
valsx
,
xedges
)
binindices_y
=
np
.
digitize
(
valsy
,
yedges
)
mean_signal
=
get_mean_event
(
c
.
x_test
,
c
.
y_test
,
1
)
# create profile histogram
hist
=
[]
for
binindex_x
in
range
(
1
,
len
(
xedges
)
+
1
):
line
=
[]
for
binindex_y
in
range
(
1
,
len
(
xedges
)
+
1
):
try
:
prof_score
=
metric
(
scores
[(
binindices_x
==
binindex_x
)
&
(
binindices_y
==
binindex_y
)])
except
ValueError
:
prof_score
=
0
line
.
append
(
prof_score
)
hist
.
append
(
line
)
hist
=
np
.
array
(
hist
)
print
(
"
Mean signal:
"
)
plot_hist_2D
(
plotname
,
xedges
,
yedges
,
hist
,
**
kwargs
)
for
branch_index
,
val
in
enumerate
(
mean_signal
):
print
(
"
{:>20}: {:<10.3f}
"
.
format
(
c
.
branches
[
branch_index
],
val
))
plot_NN_vs_var_1D
(
"
met.pdf
"
,
mean_signal
,
scorefun
=
c
.
evaluate
,
var_index
=
c
.
branches
.
index
(
"
met
"
),
var_range
=
(
0
,
1000
,
10
),
var_label
=
"
met [GeV]
"
)
plot_NN_vs_var_1D
(
"
mt.pdf
"
,
mean_signal
,
if
__name__
==
"
__main__
"
:
scorefun
=
c
.
evaluate
,
var_index
=
c
.
branches
.
index
(
"
mt
"
),
var_range
=
(
0
,
500
,
10
),
var_label
=
"
mt [GeV]
"
)
plot_NN_vs_var_2D
(
"
mt_vs_met.pdf
"
,
means
=
mean_signal
,
import
sys
scorefun
=
c
.
evaluate
,
var1_index
=
c
.
branches
.
index
(
"
met
"
),
var1_range
=
(
0
,
1000
,
10
),
var2_index
=
c
.
branches
.
index
(
"
mt
"
),
var2_range
=
(
0
,
500
,
10
),
var1_label
=
"
met [GeV]
"
,
var2_label
=
"
mt [GeV]
"
)
from
.toolkit
import
ClassificationProject
# plot_NN_vs_var_2D_all("mt_vs_met_all.pdf", means=mean_signal,
import
logging
# model=c.model, transform_function=c.scaler.transform,
logging
.
basicConfig
()
# var1_index=c.branches.index("met"), var1_range=(0, 1000, 10),
logging
.
getLogger
(
"
tfhelpers
"
).
setLevel
(
logging
.
DEBUG
)
# var2_index=c.branches.index("mt"), var2_range=(0, 500, 10),
# var1_label="met [GeV]", var2_label="mt [GeV]")
import
keras.backend
as
K
from
.tfhelpers
import
get_single_neuron_function
,
get_max_activation_events
from
.tfhelpers
import
get_single_neuron_function
,
get_max_activation_events
import
meme
import
meme
meme
.
setOptions
(
overrideCache
=
"
/scratch-local/nhartmann/meme_cache
"
)
#
meme.setOptions(overrideCache="/scratch-local/nhartmann/meme_cache")
import
logging
if
len
(
sys
.
argv
)
<
2
:
logging
.
basicConfig
()
c
=
ClassificationProject
(
os
.
path
.
expanduser
(
"
~/p/scripts/keras/008-allhighlevel/all_highlevel_985
"
))
logging
.
getLogger
(
"
tfhelpers
"
).
setLevel
(
logging
.
DEBUG
)
else
:
c
=
ClassificationProject
(
sys
.
argv
[
1
])
def
test_mean_signal
():
mean_signal
=
get_mean_event
(
c
.
x_test
,
c
.
y_test
,
1
)
print
(
"
Mean signal:
"
)
for
branch_index
,
val
in
enumerate
(
mean_signal
):
print
(
"
{:>20}: {:<10.3f}
"
.
format
(
c
.
branches
[
branch_index
],
val
))
plot_NN_vs_var_1D
(
"
met.pdf
"
,
mean_signal
,
scorefun
=
c
.
evaluate
,
var_index
=
c
.
branches
.
index
(
"
met
"
),
var_range
=
(
0
,
1000
,
10
),
var_label
=
"
met [GeV]
"
)
plot_NN_vs_var_1D
(
"
mt.pdf
"
,
mean_signal
,
scorefun
=
c
.
evaluate
,
var_index
=
c
.
branches
.
index
(
"
mt
"
),
var_range
=
(
0
,
500
,
10
),
var_label
=
"
mt [GeV]
"
)
plot_NN_vs_var_2D
(
"
mt_vs_met_crosscheck.pdf
"
,
means
=
mean_signal
,
plot_NN_vs_var_2D
(
"
mt_vs_met.pdf
"
,
means
=
mean_signal
,
scorefun
=
get_single_neuron_function
(
c
.
model
,
layer
=
3
,
neuron
=
0
,
scaler
=
c
.
scaler
),
scorefun
=
c
.
evaluate
,
var1_index
=
c
.
branches
.
index
(
"
met
"
),
var1_range
=
(
0
,
1000
,
10
),
var1_index
=
c
.
branches
.
index
(
"
met
"
),
var1_range
=
(
0
,
1000
,
10
),
var2_index
=
c
.
branches
.
index
(
"
mt
"
),
var2_range
=
(
0
,
500
,
10
),
var2_index
=
c
.
branches
.
index
(
"
mt
"
),
var2_range
=
(
0
,
500
,
10
),
var1_label
=
"
met [GeV]
"
,
var2_label
=
"
mt [GeV]
"
)
var1_label
=
"
met [GeV]
"
,
var2_label
=
"
mt [GeV]
"
)
# transformed events
plot_NN_vs_var_2D_all
(
"
mt_vs_met_all.pdf
"
,
means
=
mean_signal
,
c
.
load
(
reload
=
True
)
model
=
c
.
model
,
transform_function
=
c
.
scaler
.
transform
,
ranges
=
[
np
.
percentile
(
c
.
x_test
[:,
var_index
],
[
1
,
99
])
for
var_index
in
range
(
len
(
c
.
branches
))]
var1_index
=
c
.
branches
.
index
(
"
met
"
),
var1_range
=
(
0
,
1000
,
10
),
var2_index
=
c
.
branches
.
index
(
"
mt
"
),
var2_range
=
(
0
,
500
,
10
),
losses
,
events
=
get_max_activation_events
(
c
.
model
,
ranges
,
ntries
=
100000
,
layer
=
3
,
neuron
=
0
,
threshold
=
0.2
)
var1_label
=
"
met [GeV]
"
,
var2_label
=
"
mt [GeV]
"
)
events
=
c
.
scaler
.
inverse_transform
(
events
)
plot_NN_vs_var_2D
(
"
mt_vs_met_crosscheck.pdf
"
,
means
=
mean_signal
,
scorefun
=
get_single_neuron_function
(
c
.
model
,
layer
=
3
,
neuron
=
0
,
scaler
=
c
.
scaler
),
plot_hist_2D_events
(
var1_index
=
c
.
branches
.
index
(
"
met
"
),
var1_range
=
(
0
,
1000
,
10
),
"
mt_vs_met_actmaxhist.pdf
"
,
var2_index
=
c
.
branches
.
index
(
"
mt
"
),
var2_range
=
(
0
,
500
,
10
),
events
[:,
c
.
branches
.
index
(
"
met
"
)],
var1_label
=
"
met [GeV]
"
,
var2_label
=
"
mt [GeV]
"
)
events
[:,
c
.
branches
.
index
(
"
mt
"
)],
100
,
0
,
1000
,
100
,
0
,
500
,
def
test_max_act
():
varx_label
=
"
met [GeV]
"
,
vary_label
=
"
mt [GeV]
"
,
)
# transformed events
c
.
load
(
reload
=
True
)
plot_cond_avg_actmax_2D
(
ranges
=
[
np
.
percentile
(
c
.
x_test
[:,
var_index
],
[
1
,
99
])
for
var_index
in
range
(
len
(
c
.
branches
))]
"
mt_vs_met_cond_actmax.pdf
"
,
c
.
model
,
3
,
0
,
ranges
,
losses
,
events
=
get_max_activation_events
(
c
.
model
,
ranges
,
ntries
=
100000
,
layer
=
3
,
neuron
=
0
,
threshold
=
0.2
)
c
.
branches
.
index
(
"
met
"
),
c
.
branches
.
index
(
"
mt
"
),
events
=
c
.
scaler
.
inverse_transform
(
events
)
30
,
0
,
1000
,
30
,
0
,
500
,
plot_hist_2D_events
(
scaler
=
c
.
scaler
,
"
mt_vs_met_actmaxhist.pdf
"
,
varx_label
=
"
met [GeV]
"
,
vary_label
=
"
mt [GeV]
"
,
events
[:,
c
.
branches
.
index
(
"
met
"
)],
)
events
[:,
c
.
branches
.
index
(
"
mt
"
)],
100
,
0
,
1000
,
plot_hist_2D_events
(
100
,
0
,
500
,
"
mt_vs_output_actmax.pdf
"
,
varx_label
=
"
met [GeV]
"
,
vary_label
=
"
mt [GeV]
"
,
events
[:,
c
.
branches
.
index
(
"
mt
"
)],
)
losses
,
100
,
0
,
500
,
plot_hist_2D_events
(
100
,
0
,
1
,
"
mt_vs_output_actmax.pdf
"
,
varx_label
=
"
mt [GeV]
"
,
vary_label
=
"
NN output
"
,
events
[:,
c
.
branches
.
index
(
"
mt
"
)],
log
=
True
,
losses
,
)
100
,
0
,
500
,
100
,
0
,
1
,
utrf_x_test
=
c
.
scaler
.
inverse_transform
(
c
.
x_test
)
varx_label
=
"
mt [GeV]
"
,
vary_label
=
"
NN output
"
,
log
=
True
,
plot_hist_2D_events
(
)
"
mt_vs_output_signal_test.pdf
"
,
utrf_x_test
[
c
.
y_test
==
1
][:,
c
.
branches
.
index
(
"
mt
"
)],
c
.
scores_test
[
c
.
y_test
==
1
].
reshape
(
-
1
),
def
test_cond_max_act
():
100
,
0
,
1000
,
100
,
0
,
1
,
c
.
load
(
reload
=
True
)
varx_label
=
"
mt [GeV]
"
,
vary_label
=
"
NN output
"
,
ranges
=
[
np
.
percentile
(
c
.
x_test
[:,
var_index
],
[
1
,
99
])
for
var_index
in
range
(
len
(
c
.
branches
))]
log
=
True
,
)
plot_cond_avg_actmax_2D
(
"
mt_vs_met_cond_actmax.pdf
"
,
plot_hist_2D_events
(
c
.
model
,
3
,
0
,
ranges
,
"
apl_vs_output_actmax.pdf
"
,
c
.
branches
.
index
(
"
met
"
),
events
[:,
c
.
branches
.
index
(
"
LepAplanarity
"
)],
c
.
branches
.
index
(
"
mt
"
),
losses
,
30
,
0
,
1000
,
100
,
0
,
0.1
,
30
,
0
,
500
,
100
,
0
,
1
,
scaler
=
c
.
scaler
,
varx_label
=
"
Aplanarity
"
,
vary_label
=
"
NN output
"
,
varx_label
=
"
met [GeV]
"
,
vary_label
=
"
mt [GeV]
"
,
)
)
def
test_xtest_vs_output
():
c
.
load
(
reload
=
True
)
utrf_x_test
=
c
.
scaler
.
inverse_transform
(
c
.
x_test
)
plot_hist_2D_events
(
"
mt_vs_output_signal_test.pdf
"
,
utrf_x_test
[
c
.
y_test
==
1
][:,
c
.
branches
.
index
(
"
mt
"
)],
c
.
scores_test
[
c
.
y_test
==
1
].
reshape
(
-
1
),
100
,
0
,
1000
,
100
,
0
,
1
,
varx_label
=
"
mt [GeV]
"
,
vary_label
=
"
NN output
"
,
log
=
True
,
)
# plot_hist_2D_events(
# "apl_vs_output_actmax.pdf",
# events[:,c.branches.index("LepAplanarity")],
# losses,
# 100, 0, 0.1,
# 100, 0, 1,
# varx_label="Aplanarity", vary_label="NN output",
# )
def
test_profile
():
c
.
load
(
reload
=
True
)
utrf_x_test
=
c
.
scaler
.
inverse_transform
(
c
.
x_test
)
plot_profile_2D
(
"
mt_vs_met_profilemean_sig.pdf
"
,
utrf_x_test
[
c
.
y_test
==
1
][:,
c
.
branches
.
index
(
"
met
"
)],
utrf_x_test
[
c
.
y_test
==
1
][:,
c
.
branches
.
index
(
"
mt
"
)],
c
.
scores_test
[
c
.
y_test
==
1
].
reshape
(
-
1
),
20
,
0
,
500
,
20
,
0
,
1000
,
varx_label
=
"
met [GeV]
"
,
vary_label
=
"
mt [GeV]
"
,
)
plot_profile_2D
(
"
mt_vs_met_profilemax_sig.pdf
"
,
utrf_x_test
[
c
.
y_test
==
1
][:,
c
.
branches
.
index
(
"
met
"
)],
utrf_x_test
[
c
.
y_test
==
1
][:,
c
.
branches
.
index
(
"
mt
"
)],
c
.
scores_test
[
c
.
y_test
==
1
].
reshape
(
-
1
),
20
,
0
,
500
,
20
,
0
,
1000
,
metric
=
np
.
max
,
varx_label
=
"
met [GeV]
"
,
vary_label
=
"
mt [GeV]
"
,
)
for
obj
in
dir
():
if
obj
.
startswith
(
"
test_
"
)
and
callable
(
locals
()[
obj
]):
if
(
len
(
sys
.
argv
)
>
2
)
and
(
not
sys
.
argv
[
2
]
==
obj
):
continue
print
(
"
Running {}
"
.
format
(
obj
))
locals
()[
obj
]()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment