Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
99966d64
Commit
99966d64
authored
6 years ago
by
Nikolai
Browse files
Options
Downloads
Plain Diff
Merge remote-tracking branch 'origin/master'
parents
35d84c65
a7e74f64
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
.gitignore
+1
-0
1 addition, 0 deletions
.gitignore
toolkit.py
+42
-3
42 additions, 3 deletions
toolkit.py
with
43 additions
and
3 deletions
.gitignore
+
1
−
0
View file @
99966d64
outputs/
outputs/
*.swp
This diff is collapsed.
Click to expand it.
toolkit.py
+
42
−
3
View file @
99966d64
...
@@ -13,11 +13,15 @@ import pandas as pd
...
@@ -13,11 +13,15 @@ import pandas as pd
import
h5py
import
h5py
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.externals
import
joblib
from
sklearn.externals
import
joblib
from
sklearn.metrics
import
roc_curve
from
keras.models
import
Sequential
from
keras.models
import
Sequential
from
keras.layers
import
Dense
from
keras.layers
import
Dense
from
keras.models
import
model_from_json
from
keras.models
import
model_from_json
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
# configure number of cores
# configure number of cores
# this doesn't seem to work, but at least with these settings keras only uses 4 processes
# this doesn't seem to work, but at least with these settings keras only uses 4 processes
import
tensorflow
as
tf
import
tensorflow
as
tf
...
@@ -79,6 +83,9 @@ class KerasROOTClassification:
...
@@ -79,6 +83,9 @@ class KerasROOTClassification:
self
.
_sig_weights
=
None
self
.
_sig_weights
=
None
self
.
_model
=
None
self
.
_model
=
None
self
.
score_train
=
None
self
.
score_test
=
None
# track the number of epochs this model has been trained
# track the number of epochs this model has been trained
self
.
total_epochs
=
0
self
.
total_epochs
=
0
...
@@ -176,6 +183,8 @@ class KerasROOTClassification:
...
@@ -176,6 +183,8 @@ class KerasROOTClassification:
self
.
_scaler
=
StandardScaler
()
self
.
_scaler
=
StandardScaler
()
logger
.
info
(
"
Fitting StandardScaler to training data
"
)
logger
.
info
(
"
Fitting StandardScaler to training data
"
)
self
.
_scaler
.
fit
(
self
.
x_train
)
self
.
_scaler
.
fit
(
self
.
x_train
)
logger
.
info
(
"
Fitting StandardScaler to test data
"
)
self
.
_scaler
.
fit
(
self
.
x_test
)
joblib
.
dump
(
self
.
_scaler
,
filename
)
joblib
.
dump
(
self
.
_scaler
,
filename
)
return
self
.
_scaler
return
self
.
_scaler
...
@@ -226,7 +235,8 @@ class KerasROOTClassification:
...
@@ -226,7 +235,8 @@ class KerasROOTClassification:
self
.
_model
.
add
(
Dense
(
self
.
nodes
,
activation
=
self
.
activation_function
))
self
.
_model
.
add
(
Dense
(
self
.
nodes
,
activation
=
self
.
activation_function
))
# last layer is one neuron (binary classification)
# last layer is one neuron (binary classification)
self
.
_model
.
add
(
Dense
(
1
,
activation
=
'
sigmoid
'
))
self
.
_model
.
add
(
Dense
(
1
,
activation
=
'
sigmoid
'
))
logger
.
info
(
"
Compile model
"
)
self
.
_model
.
compile
(
optimizer
=
'
SGD
'
,
self
.
_model
.
compile
(
optimizer
=
'
SGD
'
,
loss
=
'
binary_crossentropy
'
,
loss
=
'
binary_crossentropy
'
,
metrics
=
[
'
accuracy
'
])
metrics
=
[
'
accuracy
'
])
...
@@ -251,6 +261,8 @@ class KerasROOTClassification:
...
@@ -251,6 +261,8 @@ class KerasROOTClassification:
if
not
self
.
data_loaded
:
if
not
self
.
data_loaded
:
self
.
_load_data
()
self
.
_load_data
()
self
.
scaler
if
not
self
.
data_transformed
:
if
not
self
.
data_transformed
:
self
.
_transform_data
()
self
.
_transform_data
()
...
@@ -267,6 +279,7 @@ class KerasROOTClassification:
...
@@ -267,6 +279,7 @@ class KerasROOTClassification:
self
.
total_epochs
=
self
.
_read_info
(
"
epochs
"
,
0
)
self
.
total_epochs
=
self
.
_read_info
(
"
epochs
"
,
0
)
logger
.
info
(
"
Train model
"
)
self
.
model
.
fit
(
self
.
x_train
,
self
.
model
.
fit
(
self
.
x_train
,
# the reshape might be unnescessary here
# the reshape might be unnescessary here
self
.
y_train
.
reshape
(
-
1
,
1
),
self
.
y_train
.
reshape
(
-
1
,
1
),
...
@@ -274,11 +287,18 @@ class KerasROOTClassification:
...
@@ -274,11 +287,18 @@ class KerasROOTClassification:
class_weight
=
self
.
class_weight
,
class_weight
=
self
.
class_weight
,
shuffle
=
True
,
shuffle
=
True
,
batch_size
=
self
.
batch_size
)
batch_size
=
self
.
batch_size
)
logger
.
info
(
"
Save weights
"
)
self
.
model
.
save_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
self
.
model
.
save_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
self
.
total_epochs
+=
epochs
self
.
total_epochs
+=
epochs
self
.
_write_info
(
"
epochs
"
,
self
.
total_epochs
)
self
.
_write_info
(
"
epochs
"
,
self
.
total_epochs
)
logger
.
info
(
"
Create scores for ROC curve
"
)
self
.
scores_test
=
self
.
model
.
predict
(
self
.
x_test
)
self
.
scores_train
=
self
.
model
.
predict
(
self
.
x_train
)
def
evaluate
(
self
):
def
evaluate
(
self
):
pass
pass
...
@@ -333,7 +353,25 @@ class KerasROOTClassification:
...
@@ -333,7 +353,25 @@ class KerasROOTClassification:
def
plotROC
(
self
):
def
plotROC
(
self
):
pass
logger
.
info
(
"
Plot ROC curve
"
)
fpr
,
tpr
,
threshold
=
roc_curve
(
self
.
y_test
,
self
.
scores_test
,
sample_weight
=
self
.
w_test
)
plt
.
grid
(
color
=
'
gray
'
,
linestyle
=
'
--
'
,
linewidth
=
1
)
plt
.
plot
(
fpr
,
tpr
,
label
=
'
NN
'
)
plt
.
plot
([
0
,
1
],[
0
,
1
],
linestyle
=
'
--
'
,
color
=
'
black
'
,
label
=
'
Luck
'
)
plt
.
xlabel
(
"
False positive rate (background rejection)
"
)
plt
.
ylabel
(
"
True positive rate (signal efficiency)
"
)
plt
.
title
(
'
Receiver operating characteristic
'
)
plt
.
xlim
(
0
,
1
)
plt
.
ylim
(
0
,
1
)
plt
.
xticks
(
np
.
arange
(
0
,
1
,
0.1
))
plt
.
yticks
(
np
.
arange
(
0
,
1
,
0.1
))
plt
.
legend
(
loc
=
'
lower left
'
,
framealpha
=
1.0
)
plt
.
savefig
(
os
.
path
.
join
(
self
.
project_dir
,
"
ROC.pdf
"
))
plt
.
clf
()
def
plotScore
(
self
):
def
plotScore
(
self
):
pass
pass
...
@@ -358,3 +396,4 @@ if __name__ == "__main__":
...
@@ -358,3 +396,4 @@ if __name__ == "__main__":
identifiers
=
[
"
DatasetNumber
"
,
"
EventNumber
"
])
identifiers
=
[
"
DatasetNumber
"
,
"
EventNumber
"
])
c
.
train
(
epochs
=
1
)
c
.
train
(
epochs
=
1
)
c
.
plotROC
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment