Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
43f12959
Commit
43f12959
authored
6 years ago
by
Nikolai
Browse files
Options
Downloads
Plain Diff
Merge branch 'dev-friend'
parents
1b3e3fc3
d58f19db
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
.gitignore
+1
-0
1 addition, 0 deletions
.gitignore
addFriend.py
+48
-0
48 additions, 0 deletions
addFriend.py
toolkit.py
+89
-13
89 additions, 13 deletions
toolkit.py
with
138 additions
and
13 deletions
.gitignore
+
1
−
0
View file @
43f12959
...
@@ -4,3 +4,4 @@ run.py
...
@@ -4,3 +4,4 @@ run.py
*.swp
*.swp
*.pyc
*.pyc
*.pdf
*.pdf
*.root
This diff is collapsed.
Click to expand it.
addFriend.py
0 → 100755
+
48
−
0
View file @
43f12959
#!/usr/bin/env python
import
argparse
import
ROOT
parser
=
argparse
.
ArgumentParser
(
description
=
'
add a friend tree to a tree in another file
'
)
parser
.
add_argument
(
"
infile
"
,
help
=
"
input file that contains the friend tree
"
)
parser
.
add_argument
(
"
intree
"
,
help
=
"
name of the friend tree
"
)
parser
.
add_argument
(
"
outfile
"
,
help
=
"
output file where the friend tree should be added
"
)
parser
.
add_argument
(
"
outtree
"
,
help
=
"
name of the tree (in output file) to which the friend should be added
"
)
args
=
parser
.
parse_args
()
outfile
=
ROOT
.
TFile
.
Open
(
args
.
outfile
,
"
UPDATE
"
)
infile
=
ROOT
.
TFile
.
Open
(
args
.
infile
)
for
k
in
outfile
.
GetListOfKeys
():
if
k
.
GetName
()
==
args
.
intree
:
raise
ValueError
(
"
Tree with name {} already exists in outputfile
"
.
format
(
args
.
intree
))
outfile
.
cd
()
outtree
=
outfile
.
Get
(
args
.
outtree
)
if
not
outtree
:
raise
KeyError
(
"
Tree {} not found in file {}
"
.
format
(
args
.
outtree
,
args
.
outfile
))
if
outtree
.
GetListOfFriends
():
for
k
in
outtree
.
GetListOfFriends
():
if
k
.
GetName
()
==
args
.
intree
:
raise
ValueError
(
"
Tree with name {} is already friend of {}
"
.
format
(
args
.
intree
,
args
.
outtree
))
infile
.
cd
()
intree
=
infile
.
Get
(
args
.
intree
)
if
not
intree
:
raise
KeyError
(
"
Tree {} not found in file {}
"
.
format
(
args
.
intree
,
args
.
infile
))
# Add friend and write friend tree and original tree to outfile
outfile
.
cd
()
outtree
.
AddFriend
(
intree
)
outtree
.
Write
(
outtree
.
GetName
())
outfile
.
cd
()
clonetree
=
intree
.
CloneTree
(
-
1
,
"
fast
"
)
clonetree
.
Write
(
intree
.
GetName
())
infile
.
Close
()
outfile
.
Close
()
This diff is collapsed.
Click to expand it.
toolkit.py
+
89
−
13
View file @
43f12959
...
@@ -9,7 +9,7 @@ import logging
...
@@ -9,7 +9,7 @@ import logging
logger
=
logging
.
getLogger
(
"
KerasROOTClassification
"
)
logger
=
logging
.
getLogger
(
"
KerasROOTClassification
"
)
logger
.
addHandler
(
logging
.
NullHandler
())
logger
.
addHandler
(
logging
.
NullHandler
())
from
root_numpy
import
tree2array
,
rec2array
from
root_numpy
import
tree2array
,
rec2array
,
array2root
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
import
pandas
as
pd
import
h5py
import
h5py
...
@@ -117,8 +117,8 @@ class KerasROOTClassification(object):
...
@@ -117,8 +117,8 @@ class KerasROOTClassification(object):
self
.
_scores_train
=
None
self
.
_scores_train
=
None
self
.
_scores_test
=
None
self
.
_scores_test
=
None
self
.
s_eventlist_train
=
None
self
.
_
s_eventlist_train
=
None
self
.
b_eventlist_train
=
None
self
.
_
b_eventlist_train
=
None
self
.
_scaler
=
None
self
.
_scaler
=
None
self
.
_class_weight
=
None
self
.
_class_weight
=
None
...
@@ -170,9 +170,9 @@ class KerasROOTClassification(object):
...
@@ -170,9 +170,9 @@ class KerasROOTClassification(object):
selection
=
self
.
selection
,
selection
=
self
.
selection
,
start
=
1
,
step
=
self
.
step_bkg
)
start
=
1
,
step
=
self
.
step_bkg
)
self
.
_dump_training_list
()
self
.
s_eventlist_train
=
self
.
s_train
[
self
.
identifiers
]
self
.
s_eventlist_train
=
self
.
s_train
[
self
.
identifiers
]
self
.
b_eventlist_train
=
self
.
b_train
[
self
.
identifiers
]
self
.
b_eventlist_train
=
self
.
b_train
[
self
.
identifiers
]
self
.
_dump_training_list
()
# now we don't need the identifiers anymore
# now we don't need the identifiers anymore
self
.
s_train
=
self
.
s_train
[
self
.
branches
+
[
self
.
weight_expr
]]
self
.
s_train
=
self
.
s_train
[
self
.
branches
+
[
self
.
weight_expr
]]
...
@@ -202,11 +202,37 @@ class KerasROOTClassification(object):
...
@@ -202,11 +202,37 @@ class KerasROOTClassification(object):
def
_dump_training_list
(
self
):
def
_dump_training_list
(
self
):
s_eventlist
=
pd
.
DataFrame
(
self
.
s_train
[
self
.
identifiers
])
s_eventlist_df
=
pd
.
DataFrame
(
self
.
s_eventlist_train
)
b_eventlist
=
pd
.
DataFrame
(
self
.
b_train
[
self
.
identifiers
])
b_eventlist_df
=
pd
.
DataFrame
(
self
.
b_eventlist_train
)
s_eventlist_df
.
to_csv
(
os
.
path
.
join
(
self
.
project_dir
,
"
s_eventlist_train.csv
"
))
b_eventlist_df
.
to_csv
(
os
.
path
.
join
(
self
.
project_dir
,
"
b_eventlist_train.csv
"
))
s_eventlist
.
to_csv
(
os
.
path
.
join
(
self
.
project_dir
,
"
s_eventlist_train.csv
"
))
s_eventlist
.
to_csv
(
os
.
path
.
join
(
self
.
project_dir
,
"
b_eventlist_train.csv
"
))
@property
def
s_eventlist_train
(
self
):
if
self
.
_s_eventlist_train
is
None
:
df
=
pd
.
read_csv
(
os
.
path
.
join
(
self
.
project_dir
,
"
s_eventlist_train.csv
"
))
self
.
_s_eventlist_train
=
df
.
to_records
()[
self
.
identifiers
]
return
self
.
_s_eventlist_train
@s_eventlist_train.setter
def
s_eventlist_train
(
self
,
value
):
self
.
_s_eventlist_train
=
value
@property
def
b_eventlist_train
(
self
):
if
self
.
_b_eventlist_train
is
None
:
df
=
pd
.
read_csv
(
os
.
path
.
join
(
self
.
project_dir
,
"
b_eventlist_train.csv
"
))
self
.
_b_eventlist_train
=
df
.
to_records
()[
self
.
identifiers
]
return
self
.
_b_eventlist_train
@b_eventlist_train.setter
def
b_eventlist_train
(
self
,
value
):
self
.
_b_eventlist_train
=
value
def
_dump_to_hdf5
(
self
,
*
dataset_names
):
def
_dump_to_hdf5
(
self
,
*
dataset_names
):
...
@@ -435,10 +461,51 @@ class KerasROOTClassification(object):
...
@@ -435,10 +461,51 @@ class KerasROOTClassification(object):
def
evaluate
(
self
):
def
evaluate
(
self
,
x_eval
):
pass
logger
.
debug
(
"
Evaluate score for {}
"
.
format
(
x_eval
))
x_eval
=
self
.
scaler
.
transform
(
x_eval
)
def
write_friend_tree
(
self
):
logger
.
debug
(
"
Evaluate for transformed array: {}
"
.
format
(
x_eval
))
return
self
.
model
.
predict
(
x_eval
)
def
write_friend_tree
(
self
,
score_name
,
source_filename
,
source_treename
,
target_filename
,
target_treename
,
batch_size
=
100000
):
f
=
ROOT
.
TFile
.
Open
(
source_filename
)
tree
=
f
.
Get
(
source_treename
)
entries
=
tree
.
GetEntries
()
if
os
.
path
.
exists
(
target_filename
):
raise
IOError
(
"
{} already exists, if you want to recreate it, delete it first
"
.
format
(
target_filename
))
for
start
in
range
(
0
,
entries
,
batch_size
):
logger
.
info
(
"
Evaluating score for entry {}/{}
"
.
format
(
start
,
entries
))
logger
.
debug
(
"
Loading next batch
"
)
x_from_tree
=
tree2array
(
tree
,
branches
=
self
.
branches
+
self
.
identifiers
,
start
=
start
,
stop
=
start
+
batch_size
)
x_eval
=
rec2array
(
x_from_tree
[
self
.
branches
])
# create list of booleans that indicate which events where used for training
df_identifiers
=
pd
.
DataFrame
(
x_from_tree
[
self
.
identifiers
])
total_train_list
=
self
.
s_eventlist_train
total_train_list
=
np
.
concatenate
((
total_train_list
,
self
.
b_eventlist_train
))
merged
=
df_identifiers
.
merge
(
pd
.
DataFrame
(
total_train_list
),
on
=
tuple
(
self
.
identifiers
),
indicator
=
True
,
how
=
"
left
"
)
is_train
=
np
.
array
(
merged
[
"
_merge
"
]
==
"
both
"
)
# join scores and is_train array
scores
=
self
.
evaluate
(
x_eval
).
reshape
(
-
1
)
friend_df
=
pd
.
DataFrame
(
np
.
array
(
scores
,
dtype
=
[(
score_name
,
np
.
float64
)]))
friend_df
[
"
is_train
"
]
=
is_train
friend_tree
=
friend_df
.
to_records
()[[
score_name
,
"
is_train
"
]]
if
start
==
0
:
mode
=
"
recreate
"
else
:
mode
=
"
update
"
logger
.
debug
(
"
Write to root file
"
)
array2root
(
friend_tree
,
target_filename
,
treename
=
target_treename
,
mode
=
mode
)
logger
.
debug
(
"
Done
"
)
def
write_all_friend_trees
(
self
):
pass
pass
...
@@ -615,4 +682,13 @@ if __name__ == "__main__":
...
@@ -615,4 +682,13 @@ if __name__ == "__main__":
c
.
plot_ROC
()
c
.
plot_ROC
()
c
.
plot_loss
()
c
.
plot_loss
()
c
.
plot_accuracy
()
c
.
plot_accuracy
()
c
.
plot_weights
()
c
.
write_friend_tree
(
"
test4_score
"
,
source_filename
=
filename
,
source_treename
=
"
GG_oneStep_1705_1105_505_NoSys
"
,
target_filename
=
"
friend.root
"
,
target_treename
=
"
test4_score
"
)
np
.
random
.
seed
(
1234
)
c
.
write_friend_tree
(
"
test4_score
"
,
source_filename
=
filename
,
source_treename
=
"
ttbar_NoSys
"
,
target_filename
=
"
friend_ttbar_NoSys.root
"
,
target_treename
=
"
test4_score
"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment