Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
KerasROOTClassification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eric.Schanet
KerasROOTClassification
Commits
12b84267
Commit
12b84267
authored
6 years ago
by
Nikolai.Hartmann
Browse files
Options
Downloads
Patches
Plain Diff
scores managed as properties (saved and loaded from h5)
parent
e827fe9c
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
toolkit.py
+64
-26
64 additions, 26 deletions
toolkit.py
with
64 additions
and
26 deletions
toolkit.py
+
64
−
26
View file @
12b84267
...
@@ -36,7 +36,7 @@ K.set_session(session)
...
@@ -36,7 +36,7 @@ K.set_session(session)
import
ROOT
import
ROOT
class
KerasROOTClassification
:
class
KerasROOTClassification
(
object
)
:
dataset_names
=
[
"
x_train
"
,
"
x_test
"
,
"
y_train
"
,
"
y_test
"
,
"
w_train
"
,
"
w_test
"
]
dataset_names
=
[
"
x_train
"
,
"
x_test
"
,
"
y_train
"
,
"
y_test
"
,
"
w_train
"
,
"
w_test
"
]
...
@@ -51,7 +51,9 @@ class KerasROOTClassification:
...
@@ -51,7 +51,9 @@ class KerasROOTClassification:
validation_split
=
0.33
,
validation_split
=
0.33
,
activation_function
=
'
relu
'
,
activation_function
=
'
relu
'
,
out_dir
=
"
./outputs
"
,
out_dir
=
"
./outputs
"
,
scaler_type
=
"
RobustScaler
"
):
scaler_type
=
"
RobustScaler
"
,
step_signal
=
2
,
step_bkg
=
2
):
self
.
name
=
name
self
.
name
=
name
self
.
signal_trees
=
signal_trees
self
.
signal_trees
=
signal_trees
self
.
bkg_trees
=
bkg_trees
self
.
bkg_trees
=
bkg_trees
...
@@ -66,6 +68,8 @@ class KerasROOTClassification:
...
@@ -66,6 +68,8 @@ class KerasROOTClassification:
self
.
activation_function
=
activation_function
self
.
activation_function
=
activation_function
self
.
out_dir
=
out_dir
self
.
out_dir
=
out_dir
self
.
scaler_type
=
scaler_type
self
.
scaler_type
=
scaler_type
self
.
step_signal
=
step_signal
self
.
step_bkg
=
step_bkg
self
.
project_dir
=
os
.
path
.
join
(
self
.
out_dir
,
name
)
self
.
project_dir
=
os
.
path
.
join
(
self
.
out_dir
,
name
)
...
@@ -94,8 +98,8 @@ class KerasROOTClassification:
...
@@ -94,8 +98,8 @@ class KerasROOTClassification:
self
.
_model
=
None
self
.
_model
=
None
self
.
_history
=
None
self
.
_history
=
None
self
.
score_train
=
None
self
.
_
score
s
_train
=
None
self
.
score_test
=
None
self
.
_
score
s
_test
=
None
# track the number of epochs this model has been trained
# track the number of epochs this model has been trained
self
.
total_epochs
=
0
self
.
total_epochs
=
0
...
@@ -124,19 +128,19 @@ class KerasROOTClassification:
...
@@ -124,19 +128,19 @@ class KerasROOTClassification:
self
.
s_train
=
tree2array
(
signal_chain
,
self
.
s_train
=
tree2array
(
signal_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
]
+
self
.
identifiers
,
branches
=
self
.
branches
+
[
self
.
weight_expr
]
+
self
.
identifiers
,
selection
=
self
.
selection
,
selection
=
self
.
selection
,
start
=
0
,
step
=
2
)
start
=
0
,
step
=
self
.
step_signal
)
self
.
b_train
=
tree2array
(
bkg_chain
,
self
.
b_train
=
tree2array
(
bkg_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
]
+
self
.
identifiers
,
branches
=
self
.
branches
+
[
self
.
weight_expr
]
+
self
.
identifiers
,
selection
=
self
.
selection
,
selection
=
self
.
selection
,
start
=
0
,
step
=
200
)
start
=
0
,
step
=
self
.
step_bkg
)
self
.
s_test
=
tree2array
(
signal_chain
,
self
.
s_test
=
tree2array
(
signal_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
],
branches
=
self
.
branches
+
[
self
.
weight_expr
],
selection
=
self
.
selection
,
selection
=
self
.
selection
,
start
=
1
,
step
=
2
)
start
=
1
,
step
=
self
.
step_signal
)
self
.
b_test
=
tree2array
(
bkg_chain
,
self
.
b_test
=
tree2array
(
bkg_chain
,
branches
=
self
.
branches
+
[
self
.
weight_expr
],
branches
=
self
.
branches
+
[
self
.
weight_expr
],
selection
=
self
.
selection
,
selection
=
self
.
selection
,
start
=
1
,
step
=
200
)
start
=
1
,
step
=
self
.
step_bkg
)
self
.
_dump_training_list
()
self
.
_dump_training_list
()
self
.
s_eventlist_train
=
self
.
s_train
[
self
.
identifiers
]
self
.
s_eventlist_train
=
self
.
s_train
[
self
.
identifiers
]
...
@@ -178,14 +182,20 @@ class KerasROOTClassification:
...
@@ -178,14 +182,20 @@ class KerasROOTClassification:
s_eventlist
.
to_csv
(
os
.
path
.
join
(
self
.
project_dir
,
"
b_eventlist_train.csv
"
))
s_eventlist
.
to_csv
(
os
.
path
.
join
(
self
.
project_dir
,
"
b_eventlist_train.csv
"
))
def
_dump_to_hdf5
(
self
):
def
_dump_to_hdf5
(
self
,
dataset_names
=
None
):
for
dataset_name
in
self
.
dataset_names
:
if
dataset_names
is
None
:
with
h5py
.
File
(
os
.
path
.
join
(
self
.
project_dir
,
dataset_name
+
"
.h5
"
),
"
w
"
)
as
hf
:
dataset_names
=
self
.
dataset_names
for
dataset_name
in
dataset_names
:
filename
=
os
.
path
.
join
(
self
.
project_dir
,
dataset_name
+
"
.h5
"
)
logger
.
info
(
"
Writing {} to {}
"
.
format
(
dataset_name
,
filename
))
with
h5py
.
File
(
filename
,
"
w
"
)
as
hf
:
hf
.
create_dataset
(
dataset_name
,
data
=
getattr
(
self
,
dataset_name
))
hf
.
create_dataset
(
dataset_name
,
data
=
getattr
(
self
,
dataset_name
))
def
_load_from_hdf5
(
self
):
def
_load_from_hdf5
(
self
,
dataset_names
=
None
):
for
dataset_name
in
self
.
dataset_names
:
if
dataset_names
is
None
:
dataset_names
=
self
.
dataset_names
for
dataset_name
in
dataset_names
:
filename
=
os
.
path
.
join
(
self
.
project_dir
,
dataset_name
+
"
.h5
"
)
filename
=
os
.
path
.
join
(
self
.
project_dir
,
dataset_name
+
"
.h5
"
)
logger
.
info
(
"
Trying to load {} from {}
"
.
format
(
dataset_name
,
filename
))
logger
.
info
(
"
Trying to load {} from {}
"
.
format
(
dataset_name
,
filename
))
with
h5py
.
File
(
filename
)
as
hf
:
with
h5py
.
File
(
filename
)
as
hf
:
...
@@ -193,6 +203,33 @@ class KerasROOTClassification:
...
@@ -193,6 +203,33 @@ class KerasROOTClassification:
logger
.
info
(
"
Data loaded
"
)
logger
.
info
(
"
Data loaded
"
)
@property
def
scores_train
(
self
):
if
self
.
_scores_train
is
None
:
self
.
_load_from_hdf5
([
"
_scores_train
"
])
return
self
.
_scores_train
@scores_train.setter
def
scores_train
(
self
,
value
):
self
.
_scores_train
=
value
self
.
_dump_to_hdf5
([
"
_scores_train
"
])
@property
def
scores_test
(
self
):
if
self
.
_scores_test
is
None
:
self
.
_load_from_hdf5
([
"
_scores_test
"
])
return
self
.
_scores_test
@scores_test.setter
def
scores_test
(
self
,
value
):
self
.
_scores_test
=
value
logger
.
info
(
"
dump
"
)
self
.
_dump_to_hdf5
([
"
_scores_test
"
])
@property
@property
def
scaler
(
self
):
def
scaler
(
self
):
# create the scaler (and fit to training data) if not existent
# create the scaler (and fit to training data) if not existent
...
@@ -309,13 +346,13 @@ class KerasROOTClassification:
...
@@ -309,13 +346,13 @@ class KerasROOTClassification:
logger
.
info
(
"
Train model
"
)
logger
.
info
(
"
Train model
"
)
self
.
_history
=
self
.
model
.
fit
(
self
.
x_train
,
self
.
_history
=
self
.
model
.
fit
(
self
.
x_train
,
# the reshape might be unnescessary here
# the reshape might be unnescessary here
self
.
y_train
.
reshape
(
-
1
,
1
),
self
.
y_train
.
reshape
(
-
1
,
1
),
epochs
=
epochs
,
epochs
=
epochs
,
validation_split
=
self
.
validation_split
,
validation_split
=
self
.
validation_split
,
class_weight
=
self
.
class_weight
,
class_weight
=
self
.
class_weight
,
shuffle
=
True
,
shuffle
=
True
,
batch_size
=
self
.
batch_size
)
batch_size
=
self
.
batch_size
)
logger
.
info
(
"
Save weights
"
)
logger
.
info
(
"
Save weights
"
)
self
.
model
.
save_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
self
.
model
.
save_weights
(
os
.
path
.
join
(
self
.
project_dir
,
"
weights.h5
"
))
...
@@ -323,7 +360,7 @@ class KerasROOTClassification:
...
@@ -323,7 +360,7 @@ class KerasROOTClassification:
self
.
total_epochs
+=
epochs
self
.
total_epochs
+=
epochs
self
.
_write_info
(
"
epochs
"
,
self
.
total_epochs
)
self
.
_write_info
(
"
epochs
"
,
self
.
total_epochs
)
logger
.
info
(
"
Create scores for ROC curve
"
)
logger
.
info
(
"
Create
/Update
scores for ROC curve
"
)
self
.
scores_test
=
self
.
model
.
predict
(
self
.
x_test
)
self
.
scores_test
=
self
.
model
.
predict
(
self
.
x_test
)
self
.
scores_train
=
self
.
model
.
predict
(
self
.
x_train
)
self
.
scores_train
=
self
.
model
.
predict
(
self
.
x_train
)
...
@@ -454,12 +491,12 @@ class KerasROOTClassification:
...
@@ -454,12 +491,12 @@ class KerasROOTClassification:
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
logging
.
basicConfig
()
logging
.
basicConfig
()
#
logging.getLogger("KerasROOTClassification").setLevel(logging.INFO)
logging
.
getLogger
(
"
KerasROOTClassification
"
).
setLevel
(
logging
.
INFO
)
logging
.
getLogger
(
"
KerasROOTClassification
"
).
setLevel
(
logging
.
DEBUG
)
#
logging.getLogger("KerasROOTClassification").setLevel(logging.DEBUG)
filename
=
"
/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root
"
filename
=
"
/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root
"
c
=
KerasROOTClassification
(
"
test
2
"
,
c
=
KerasROOTClassification
(
"
test
3
"
,
signal_trees
=
[(
filename
,
"
GG_oneStep_1705_1105_505_NoSys
"
)],
signal_trees
=
[(
filename
,
"
GG_oneStep_1705_1105_505_NoSys
"
)],
bkg_trees
=
[(
filename
,
"
ttbar_NoSys
"
),
bkg_trees
=
[(
filename
,
"
ttbar_NoSys
"
),
(
filename
,
"
wjets_Sherpa221_NoSys
"
)
(
filename
,
"
wjets_Sherpa221_NoSys
"
)
...
@@ -467,9 +504,10 @@ if __name__ == "__main__":
...
@@ -467,9 +504,10 @@ if __name__ == "__main__":
selection
=
"
lep1Pt<5000
"
,
# cut out a few very weird outliers
selection
=
"
lep1Pt<5000
"
,
# cut out a few very weird outliers
branches
=
[
"
met
"
,
"
mt
"
],
branches
=
[
"
met
"
,
"
mt
"
],
weight_expr
=
"
eventWeight*genWeight
"
,
weight_expr
=
"
eventWeight*genWeight
"
,
identifiers
=
[
"
DatasetNumber
"
,
"
EventNumber
"
])
identifiers
=
[
"
DatasetNumber
"
,
"
EventNumber
"
],
step_bkg
=
100
)
c
.
train
(
epochs
=
2
0
)
#
c.train(epochs=
1
0)
c
.
plot_ROC
()
c
.
plot_ROC
()
c
.
plot_loss
()
c
.
plot_loss
()
c
.
plot_accuracy
()
c
.
plot_accuracy
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment