Forked from
Nikolai.Hartmann / KerasROOTClassification
85 commits behind the upstream repository.
-
Nikolai.Hartmann authoredNikolai.Hartmann authored
utils.py 7.51 KiB
"Helper functions using keras or tensorflow"
import logging
import numpy as np
import keras.backend as K
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing.data import _handle_zeros_in_scale
from meme import cache
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
def get_single_neuron_function(model, layer, neuron, input_transform=None):
inp = model.input
if not isinstance(inp, list):
inp = [inp]
f = K.function(inp+[K.learning_phase()], [model.layers[layer].output[:,neuron]])
def eval_single_neuron(x):
if input_transform is not None:
x_eval = input_transform(x)
else:
x_eval = x
if not isinstance(x_eval, list):
x_eval = [x_eval]
return f(x_eval)[0]
return eval_single_neuron
def create_random_event(ranges):
random_event = np.array([p[0]+(p[1]-p[0])*np.random.rand() for p in ranges])
random_event = random_event.reshape(-1, len(random_event))
return random_event
def get_ranges(x, quantiles, weights, mask_value=None, filter_index=None):
"Get ranges for plotting or random event generation based on quantiles"
ranges = []
for var_index in range(x.shape[1]):
if (filter_index is not None) and (var_index != filter_index):
continue
x_var = x[:,var_index]
not_masked = np.where(x_var != mask_value)[0]
ranges.append(weighted_quantile(x_var[not_masked], quantiles, sample_weight=weights[not_masked]))
return ranges
def max_activation_wrt_input(gradient_function, random_event, threshold=None, maxthreshold=None, maxit=100, step=1, const_indices=[],
input_transform=None, input_inverse_transform=None):
if input_transform is not None:
random_event = input_transform(random_event)
if not isinstance(random_event, list):
random_event = [random_event]
def iterate(random_event):
for i in range(maxit):
grads_out = gradient_function(random_event)
loss_value = grads_out[0][0]
grads_values = grads_out[1:]
# follow gradient for all inputs
for i, (grads_value, input_event) in enumerate(zip(grads_values, random_event)):
for const_index in const_indices:
grads_value[0][const_index] = 0
if threshold is not None:
if loss_value > threshold and (maxthreshold is None or loss_value < maxthreshold):
# found an event within the thresholds
return loss_value, random_event
elif (maxthreshold is not None and loss_value > maxthreshold):
random_event[i] -= grads_value*step
else:
random_event[i] += grads_value*step
else:
random_event[i] += grads_value*step
else:
if threshold is not None:
# no event found for the given threshold
return None, None
# otherwise return last status
return loss_value, random_event
loss_value, random_event = iterate(random_event)
if input_inverse_transform is not None and random_event is not None:
random_event = input_inverse_transform(random_event)
elif random_event is None:
return None
return loss_value, random_event
def get_grad_function(model, layer, neuron):
loss = model.layers[layer].output[:,neuron]
grads = K.gradients(loss, model.input)
# trick from https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
norm_grads = [grad/(K.sqrt(K.mean(K.square(grad))) + 1e-5) for grad in grads]
inp = model.input
if not isinstance(inp, list):
inp = [inp]
return K.function(inp, [loss]+norm_grads)
@cache(useJSON=True,
argHashFunctions=[
lambda model: [hash(i.tostring()) for i in model.get_weights()],
lambda ranges: [hash(i.tostring()) for i in ranges],
],
ignoreKwargs=["input_transform", "input_inverse_transform"],
)
def get_max_activation_events(model, ranges, ntries, layer, neuron, seed=42, **kwargs):
gradient_function = get_grad_function(model, layer, neuron)
events = None
losses = None
np.random.seed(seed)
for i in range(ntries):
if not (i%100):
logger.info(i)
res = max_activation_wrt_input(gradient_function,
create_random_event(ranges),
**kwargs)
if res is not None:
loss, event = res
loss = np.array([loss])
else:
continue
if events is None:
events = event
losses = loss
else:
events = np.concatenate([events, event])
losses = np.concatenate([losses, loss])
return losses, events
"from https://stackoverflow.com/questions/21844024/weighted-percentile-using-numpy#29677616"
def weighted_quantile(values, quantiles, sample_weight=None, values_sorted=False, old_style=False):
""" Very close to np.percentile, but supports weights.
NOTE: quantiles should be in [0, 1]!
:param values: np.array with data
:param quantiles: array-like with many quantiles needed
:param sample_weight: array-like of the same length as `array`
:param values_sorted: bool, if True, then will avoid sorting of initial array
:param old_style: if True, will correct output to be consistent with np.percentile.
:return: np.array with computed quantiles.
"""
values = np.array(values)
quantiles = np.array(quantiles)
if sample_weight is None:
sample_weight = np.ones(len(values))
sample_weight = np.array(sample_weight)
assert np.all(quantiles >= 0) and np.all(quantiles <= 1), 'quantiles should be in [0, 1]'
if not values_sorted:
sorter = np.argsort(values)
values = values[sorter]
sample_weight = sample_weight[sorter]
weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight
if old_style:
# To be convenient with np.percentile
weighted_quantiles -= weighted_quantiles[0]
weighted_quantiles /= weighted_quantiles[-1]
else:
weighted_quantiles /= np.sum(sample_weight)
return np.interp(quantiles, weighted_quantiles, values)
class WeightedRobustScaler(RobustScaler):
def fit(self, X, y=None, weights=None):
if not np.isnan(X).any():
# these checks don't work for nan values
super(WeightedRobustScaler, self).fit(X, y)
if weights is None:
return self
else:
wqs = np.array([weighted_quantile(X[:,i][~np.isnan(X[:,i])], [0.25, 0.5, 0.75], sample_weight=weights) for i in range(X.shape[1])])
self.center_ = wqs[:,1]
self.scale_ = wqs[:,2]-wqs[:,0]
self.scale_ = _handle_zeros_in_scale(self.scale_, copy=False)
print(self.scale_)
return self
def transform(self, X):
if np.isnan(X).any():
# we'd like to ignore nan values, so lets calculate without further checks
X -= self.center_
X /= self.scale_
return X
else:
return super(WeightedRobustScaler, self).transform(X)
def poisson_asimov_significance(s, ds, b, db):
"see `<http://www.pp.rhul.ac.uk/~cowan/stat/medsig/medsigNote.pdf>`_)"
db = np.sqrt(db**2+ds**2)
return np.sqrt(2*((s+b)*np.log(((s+b)*(b+db**2))/(b**2+(s+b)*db**2))-(b**2)/(db**2)*np.log(1+(db**2*s)/(b*(b+db**2)))))