Skip to content
Snippets Groups Projects
identification.py 17.22 KiB
from enstools.feature.identification import IdentificationStrategy
import xarray as xr
import numpy as np
import os, sys

import metpy.calc as mpcalc
from .util import calc_adv
from matplotlib import pyplot as plt
import cartopy.crs as ccrs
from .processing import populate_object, compute_cv
from skimage.draw import line_aa
from enstools.feature.util.enstools_utils import get_u_var, get_v_var, get_vertical_dim, get_longitude_dim, get_latitude_dim
import threading
from skimage.draw import line


class AEWIdentification(IdentificationStrategy):

    def __init__(self, wt_out_file=False, wt_traj_dir=None, cv='cv', year_summer=None, month=None, **kwargs):
        """
        Initialize the AEW Identification.

        Parameters (experimental)
        ----------
        kwargs
        wt_out_file: output the wavetroughs as new and only out-field in 0.5x0.5
        year_summer: if set, process AEW season (01.06.-31.10.) of given year
        
        """

        import enstools.feature.identification.african_easterly_waves.configuration as cfg
        self.config = cfg  # config
        self.config.out_traj_dir = wt_traj_dir
        self.config.cv_name = cv

        if year_summer is not None:
            if month is not None:
                m_str = str(month).zfill(2)
                self.config.start_date = str(year_summer) + '-' + m_str + '-01T00:00'
                self.config.end_date = str(year_summer) + '-' + m_str + '-30T00:00'
            else:
                self.config.start_date = str(year_summer) + '-06-01T00:00'
                self.config.end_date = str(year_summer) + '-10-31T00:00'

        self.config.out_wt = wt_out_file
        if wt_out_file:
            self.config.sum_over_all = True
        self.lock_ = threading.Lock()
        pass

    def precompute(self, dataset: xr.Dataset, **kwargs):
        print("Precompute for AEW identification...")

        plt.switch_backend('agg')  # this is thread safe matplotlib but cant display.

        # --------------- CLIMATOLOGY
        lon_range = self.config.data_lon
        lat_range = self.config.data_lat
        clim_file = self.config.get_clim_file()

        level_str = get_vertical_dim(dataset)
        lat_str = get_latitude_dim(dataset)
        lon_str = get_longitude_dim(dataset)

        if os.path.isfile(clim_file):
            cv_clim = xr.open_dataset(clim_file)

        else:
            # generate: need all 40y of CV data.
            print("Climatology file not found. Computing climatology...")

            from .climatology import compute_climatology
            cv_clim = compute_climatology(self.config)
            cv_clim.to_netcdf(clim_file)

        lat_str_clim = get_latitude_dim(cv_clim)
        lon_str_clim = get_longitude_dim(cv_clim)
        cv_clim = cv_clim.sel(
            **{lat_str_clim: slice(lat_range[0], lat_range[1])},
            **{lon_str_clim: slice(lon_range[0], lon_range[1])})

        # --------------- SUBSET DATA ACCORDING TO CFG
        start_date_dt = np.datetime64(self.config.start_date) if self.config.start_date is not None else None
        end_date_dt = np.datetime64(self.config.end_date) if self.config.end_date is not None else None
        # get the data we want to investigate

        dataset = dataset.sel(
            **{lat_str: slice(lat_range[0], lat_range[1])},
            **{lon_str: slice(lon_range[0], lon_range[1])},
            time=slice(start_date_dt, end_date_dt))

        if len(dataset.time.values) == 0:
            print("Given start and end time leads to no data to process.")
            exit(1)

        u_name = self.config.u_dim if self.config.u_dim is not None else get_u_var(dataset)
        v_name = self.config.v_dim if self.config.v_dim is not None else get_v_var(dataset)

        if u_name is None or v_name is None:
            print("Could not locate u and v fields in dataset. Needed to compute advection terms.")
            exit()

        # dataset = dataset.expand_dims('level')
        # level_str = 'level'
        if level_str in dataset[u_name].dims:
            dataset = dataset.sel(**{level_str: self.config.levels}) # 3-D wind field, select levels
        else:
            dataset = dataset.sel(**{level_str: self.config.levels}) # 2-D, reduce 3-D field too
            dataset[u_name] = dataset[u_name].expand_dims('level')
            dataset[v_name] = dataset[v_name].expand_dims('level')

        # rename cv_clim dimensions to be same as in data.
        cv_clim = cv_clim.rename({'lat': lat_str, 'lon': lon_str})
        if 'plev' in cv_clim.dims and 'plev' != level_str:
            print("plev from clim to level: div by 100.")
            cv_clim = cv_clim.rename({'plev': level_str})
            cv_clim = cv_clim.assign_coords({level_str: cv_clim[level_str] / 100})

        # also only use levels also present in data
        cv_clim = cv_clim.sel({level_str: dataset[level_str].values})

        if self.config.cv_name not in dataset.data_vars:
            print("Curvature Vorticity not found, trying to compute it out of U and V...")
            dataset = compute_cv(dataset, u_name, v_name, self.config.cv_name)

            # make dataset to 2.5 (or same as cv_clim)
        dataset = dataset.interp({lat_str: cv_clim.coords[lat_str], lon_str: cv_clim.coords[lon_str]})

        # make sure that lat and lon are last two dimensions
        if lat_str not in dataset[self.config.cv_name].coords.dims[-2:] or lon_str not in dataset[
                                                                                              self.config.cv_name].coords.dims[
                                                                                          -2:]:
            print("Reordering dimensions so lat and lon at back. Required for metpy.calc.")
            dataset = dataset.transpose(..., lat_str, lon_str)

        # --------------- DO NUMPY PARALLELIZED STUFF: CREATE TROUGH MASKS

        u = dataset[u_name]
        v = dataset[v_name]
        cv = dataset[self.config.cv_name]
        # smooth CV with kernel
        cv = mpcalc.smooth_n_point(cv, n=9, passes=2).metpy.dequantify()

        # create hourofyear to get anomalies
        cv = cv.assign_coords(hourofyear=cv.time.dt.strftime("%m-%d %H"))
        cv_anom = cv.groupby('hourofyear') - cv_clim.cv

        # compute advection of cv: first and second derivative
        adv1, adv2 = calc_adv(cv_anom, u, v)

        # xr.where() anomaly data exceeds the percentile from the hourofyear climatology:
        # replace data time with hourofyear -> compare with climatology percentile -> back to real time
        cv_anom_h = cv_anom.swap_dims(dims_dict={'time': 'hourofyear'})
        perc_mask_h = cv_anom_h.where(
            cv_anom_h > cv_clim.cva_quantile_hoy.sel(dict(hourofyear=cv_anom.hourofyear.data)))
        perc_mask = perc_mask_h.swap_dims(dims_dict={'hourofyear': 'time'})

        cv_perc_thresh = np.nanpercentile(cv, self.config.cv_percentile)  # 66th percentile of cv anomalies
        print(cv_perc_thresh)

        print('Locating wave troughs...')
        # filter the advection field given our conditions:
        trough_mask = adv1.where(np.logical_and(
            ~np.isnan(perc_mask),  # percentile of anomaly over threshold from climatology
            adv2.values > self.config.second_advection_min_thr,
            # second time derivative > 0: dont detect local minima over the percentile
            u.values < self.config.max_u_thresh))  # threshold for propagation speed -> keep only westward

        dataset['trough_mask'] = trough_mask

        # create 0.5x0.5 dataarray for wavetroughs
        min_lat = dataset[lat_str].data.min()
        max_lat = dataset[lat_str].data.max()
        min_lon = dataset[lon_str].data.min()
        max_lon = dataset[lon_str].data.max()

        lat05 = np.linspace(min_lat, max_lat, int((max_lat - min_lat) * 2) + 1)
        lon05 = np.linspace(min_lon, max_lon, int((max_lon - min_lon) * 2) + 1)

        # 0.5x0.5 for wavetroughs
        wt = xr.zeros_like(dataset['trough_mask'], dtype=float)
        wt = wt.isel(**{lat_str: 0}).drop(lat_str).isel(**{lon_str: 0}).drop(lon_str)
        wt = wt.expand_dims(lon05=lon05).expand_dims(lat05=lat05)
        wt = wt.transpose(..., 'lat05', 'lon05')

        dataset['wavetroughs'] = wt
        dataset['wavetroughs'].attrs['units'] = 'prob'
        dataset['wavetroughs'].attrs['standard_name'] = 'wavetroughs'
        dataset['wavetroughs'].attrs['long_name'] = 'position_of_wavetrough'
        dataset['lat05'].attrs['long_name'] = 'latitude'
        dataset['lat05'].attrs['standard_name'] = 'latitude'
        dataset['lon05'].attrs['long_name'] = 'longitude'
        dataset['lon05'].attrs['standard_name'] = 'longitude'
        dataset['lat05'].attrs['units'] = 'degrees_north'
        dataset['lon05'].attrs['units'] = 'degrees_east'

        return dataset

    def identify(self, data_chunk: xr.Dataset, **kwargs):
        objs = []
        trough_mask_cur = data_chunk.trough_mask

        def clip(tup, mint, maxt):
            return np.clip(tup, mint, maxt)

        fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 15), subplot_kw={'projection': ccrs.PlateCarree()})
        # generate zero-contours with matplotlib core
        c = trough_mask_cur.plot.contour(transform=ccrs.PlateCarree(), colors='blue', levels=[0.0],
                                         subplot_kws={'projection': ccrs.PlateCarree()})

        paths = c.collections[0].get_paths()

        wt = data_chunk.wavetroughs

        min_lat = wt.lat05.data.min()
        max_lat = wt.lat05.data.max()
        min_lon = wt.lon05.data.min()
        max_lon = wt.lon05.data.max()
        lons = len(wt.lon05.data)
        lats = len(wt.lat05.data)

        id_ = 1
        for path in paths:
            # get new object, set id
            o = self.get_new_object()
            o.id = id_
            # populate it
            populate_object(o.properties, path)

            # add to objects if keep
            if not self.keep_wavetrough(o.properties):
                continue

            objs.append(o)
            id_ += 1

            # if wavetrough out dataset, gen lines
            if not self.config.out_wt:
                continue

            for v_idx in range(len(path.vertices) - 1):
                start_lonlat = path.vertices[v_idx][0], path.vertices[v_idx][1]
                end_lonlat = path.vertices[v_idx + 1][0], path.vertices[v_idx + 1][1]

                start_idx = ((start_lonlat[0] - min_lon) / (max_lon - min_lon) * lons,
                             (start_lonlat[1] - min_lat) / (max_lat - min_lat) * lats)
                # start_idx = clip(start_idx, (0, 0), (lons, lats))

                end_idx = ((end_lonlat[0] - min_lon) / (max_lon - min_lon) * lons,
                           (end_lonlat[1] - min_lat) / (max_lat - min_lat) * lats)
                # end_idx = clip(end_idx, (0, 0), (lons, lats))

                rr, cc, val = line_aa(int(start_idx[0]), int(start_idx[1]), int(end_idx[0]), int(end_idx[1]))
                rr = clip(rr, 0, lons - 1)
                cc = clip(cc, 0, lats - 1)

                wt.data[cc, rr] = np.where(np.greater(val, wt.data[cc, rr]), val, wt.data[cc, rr])

        return data_chunk, objs

    def postprocess(self, dataset: xr.Dataset, data_desc, **kwargs):

        lat_str = get_latitude_dim(dataset)
        lon_str = get_longitude_dim(dataset)

        data_desc = self.make_ids_unique(data_desc)

        # drop everything, only keep WTs as 0.5x0.5
        if self.config.out_wt:
            for var in dataset.data_vars:
                if var not in ['wavetroughs']:
                    dataset = dataset.drop_vars([var])
            # wavetroughs are 0.5x0.5 in lat05,lon05 field. remove other stuff
            for dim in dataset.dims:
                if dim in [lat_str, lon_str, 'hourofyear', 'quantile']:
                    dataset = dataset.drop_vars([dim])

            dataset = dataset.rename({'lat05': lat_str, 'lon05': lon_str})

            level_str = get_vertical_dim(dataset)
            if level_str is not None:
                dataset = dataset.squeeze(drop=True)

            if self.config.sum_over_all:
                dataset['wavetroughs'] = dataset.wavetroughs.sum(dim='time')

        # create met3d like trajectories TODO not really working right now...
        if self.config.out_traj_dir:
            if not os.path.exists(self.config.out_traj_dir):
                os.makedirs(self.config.out_traj_dir)

            assert (len(data_desc.sets) == 1)  # TODO assert one set. maybe expand at some point
            desc_set = data_desc.sets[0]
            desc_times = desc_set.timesteps

            for idx, ts in enumerate(desc_times):
                # need to make separate dataset for each init-time
                # because number of trajs (WTs) are different from time to time
                dataset_wt = xr.Dataset()

                lon_list = []
                lat_list = []
                pres_list = []
                max_pts_in_wt = -1  # TODO what if no wts
                for o in ts.objects:  # get lons and lats
                    pt_list = o.properties.line_pts
                    lon_list.append(np.array([pt.lon for pt in pt_list]))
                    lat_list.append(np.array([pt.lat for pt in pt_list]))
                    pres_list.append(np.array([850.0 for pt in pt_list]))
                    max_pts_in_wt = max(max_pts_in_wt, len(lon_list[-1]))
                # go again and fill with NaNs at end
                for i in range(len(lon_list)):  # get lons and lats
                    lon_list[i] = np.pad(lon_list[i], (0, max_pts_in_wt - len(lon_list[i])), mode='constant',
                                         constant_values=np.nan)
                    lat_list[i] = np.pad(lat_list[i], (0, max_pts_in_wt - len(lat_list[i])), mode='constant',
                                         constant_values=np.nan)
                    pres_list[i] = np.pad(pres_list[i], (0, max_pts_in_wt - len(pres_list[i])), mode='constant',
                                          constant_values=np.nan)

                dataset_wt = dataset_wt.expand_dims(
                    time=np.arange(0, max_pts_in_wt).astype(dtype=float))  # fake traj time
                dataset_wt = dataset_wt.expand_dims(ensemble=[0])
                dataset_wt = dataset_wt.expand_dims(trajectory=np.arange(1, len(ts.objects) + 1))

                lons = xr.DataArray(np.zeros((1, len(ts.objects), max_pts_in_wt)),
                                    dims=("ensemble", "trajectory", "time"))
                lons.attrs['standard_name'] = "longitude"
                lons.attrs['long_name'] = "longitude"
                lons.attrs['units'] = "degrees_east"

                lats = xr.zeros_like(lons)
                lats.attrs['standard_name'] = "latitude"
                lats.attrs['long_name'] = "latitude"
                lats.attrs['units'] = "degrees_north"

                pres = xr.zeros_like(lons)
                pres.attrs['standard_name'] = "air_pressure"
                pres.attrs['long_name'] = "pressure"
                pres.attrs['units'] = "hPa"
                pres.attrs['positive'] = "down"
                pres.attrs['axis'] = "Z"

                dataset_wt['lon'] = lons
                dataset_wt['lat'] = lats
                dataset_wt['pressure'] = pres
                # TODO auxiliary smth?
                lon_list_np = np.array(lon_list)
                lat_list_np = np.array(lat_list)
                pres_list_np = np.array(pres_list)

                dataset_wt['lon'].data[0] = lon_list_np
                dataset_wt['lat'].data[0] = lat_list_np
                dataset_wt['pressure'].data[0] = pres_list_np

                dataset_wt['time'].attrs['standard_name'] = "time"
                dataset_wt['time'].attrs['long_name'] = "time"
                dataset_wt['time'].attrs['units'] = "hours since " + ts.valid_time.replace('T', ' ')
                dataset_wt['time'].attrs['trajectory_starttime'] = ts.valid_time.replace('T', ' ')
                dataset_wt['time'].attrs['forecast_inittime'] = ts.valid_time.replace('T',
                                                                                      ' ')  # '2006-09-01 12:00:00' # TODO ts.valid_time.replace('T', ' ')

                out_path = self.config.out_traj_dir + ts.valid_time.replace(':', '_') + '.nc'
                dataset_wt.to_netcdf(out_path)

        return dataset, data_desc

    # filter: keep current wavetrough if:
    #   troughs are within a certain spatial window
    #   length of the trough < threshold
    def keep_wavetrough(self, properties):
        """
        Called for each wavetrough, check if kept based on filtering heuristics:
        - WT requires any point of wavetrough in config.wave_filter range
        - WT requires minimum length threshold

        Parameters
        ----------
        properties

        Returns
        -------
        True if kept
        """

        in_area = False
        for line_pt in properties.line_pts:

            # check if any point is outside filtering area
            if (self.config.wave_filter_lon[0] < line_pt.lon < self.config.wave_filter_lon[1]
                    and self.config.wave_filter_lat[0] < line_pt.lat < self.config.wave_filter_lat[1]):
                in_area = True

        if not in_area:  # no point of line segment in our area
            return False

        if properties.length_deg <= self.config.degree_len_thr:  # too small
            return False

        return True