Newer
Older
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
import matplotlib.patches as patches
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from datetime import datetime
from enstools.feature.util.data_utils import pb_str_to_datetime
from pathlib import Path
import enstools.feature.identification.african_easterly_waves.configuration as cfg
# plots the wave state (all wavetroughs given specific timestep in a set) ts: pb2.Timestep
def plot_wavetroughs(ts, fig_name, cv=None):
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))
x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
y_ticks = [0, 10, 20, 30]
extent = [-100, -45, -10, 35]
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
if cv is not None:
levelfc = np.asarray([0, 0.5, 1, 2, 3]) * 1e-5
cv.plot.contourf(levels=levelfc, vmin=0, extend='max', cmap='Blues')
# generate plot per pressure level, per time step
# colors per time step
# min_time = wave_thr_list[0].time.astype('float64')
# max_time = wave_thr_list[-1].time.astype('float64')
# cmap = matplotlib.cm.get_cmap('rainbow')
# color_wgts = np.linspace(0.0, 1.0, len(wave_thr_list))
# colors = ['red', 'yellow', 'green', 'blue', 'purple']
vt = ts.valid_time
for obj_idx, obj in enumerate(ts.objects):
# time64 = wave.time.astype('float64')
# time_weight = (time64 - min_time) / (max_time - min_time) if max_time > min_time else 1.0
line_pts = obj.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor='red') # cmap(time_weight)
ax.add_patch(patch)
ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'))
ax.set_extent(extent, crs=ccrs.PlateCarree())
yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())
figure_name = fig_name.replace(':', '_') + '_aew_troughs.png'
plt.savefig(figure_name, format='png')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
return figure_name
def plot_timesteps_from_desc(object_desc, cv=None):
# plot for each set for each timestep everything detected.
from enstools.feature.util.data_utils import get_subset_by_description
for set_idx, od_set in enumerate(object_desc.sets):
cv_set = get_subset_by_description(cv, od_set, '2d')
for ts in od_set.timesteps:
cv_st = cv_set.sel(time=ts.valid_time).cv
fnt = fn + "_" + ts.valid_time
print(fnt)
# ts.validTime / .objects
fout_name = plot_wavetroughs(ts, fnt, cv=cv_st)
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def plot_track(track, fn):
nodes = [edge.parent for edge in track.graph.edges]
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))
x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
y_ticks = [0, 10, 20, 30]
extent = [-100, -45, -10, 35]
# generate plot per pressure level, per time step
# colors per time step
min_time = pb_str_to_datetime(nodes[0].time).timestamp()
max_time = pb_str_to_datetime(nodes[-1].time).timestamp()
cmap = matplotlib.cm.get_cmap('rainbow')
color_wgts = np.linspace(0.0, 1.0, len(nodes))
colors = ['red', 'yellow', 'green', 'blue', 'purple']
for node_idx, node in enumerate(nodes):
obj = node.object
time_d = pb_str_to_datetime(node.time).timestamp()
time_weight = (time_d - min_time) / (max_time - min_time) if max_time > min_time else 1.0
line_pts = obj.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor=cmap(time_weight))
ax.add_patch(patch)
ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'))
ax.set_extent(extent, crs=ccrs.PlateCarree())
yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())
figure_name = cfg.plot_dir + fn + '.png' # .replace(':', '_')
plt.title(nodes[0].time + " - " + nodes[-1].time)
print("Plot to " + str(figure_name))
plt.savefig(figure_name, format='png')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
return figure_name
def plot_track_from_graph(track_desc, fig_name_prefix, cv=None):
nodes = [edge.parent for edge in track_desc.edges]
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))
x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
y_ticks = [0, 10, 20, 30]
extent = [-100, -45, -10, 35]
if cv is not None:
cv = cv.isel(time=0)
levelfc = np.asarray([0, 0.5, 1, 2, 3]) * 1e-5
cv.plot.contourf(levels=levelfc, vmin=0, extend='max', cmap='Blues')
# generate plot per pressure level, per time step
# colors per time step
min_time = pb_str_to_datetime(nodes[0].time).timestamp()
max_time = pb_str_to_datetime(nodes[-1].time).timestamp()
cmap = matplotlib.cm.get_cmap('rainbow')
color_wgts = np.linspace(0.0, 1.0, len(nodes))
colors = ['red', 'yellow', 'green', 'blue', 'purple']
for node_idx, node in enumerate(nodes):
obj = node.object
time_d = pb_str_to_datetime(node.time).timestamp()
time_weight = (time_d - min_time) / (max_time - min_time) if max_time > min_time else 1.0
line_pts = obj.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor=cmap(time_weight))
ax.add_patch(patch)
ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'))
ax.set_extent(extent, crs=ccrs.PlateCarree())
yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())
figure_name = fig_name_prefix + '_troughs.png' # .replace(':', '_')
plt.title(nodes[0].time + " - " + nodes[-1].time)
print("Plot to " + str(figure_name))
plt.savefig(figure_name, format='png')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
return figure_name
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def plot_wt_list(nodes, fn):
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))
x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
y_ticks = [0, 10, 20, 30]
extent = [-100, -45, -10, 35]
# generate plot per pressure level, per time step
# colors per time step
# min_time = wave_thr_list[0].time.astype('float64')
# max_time = wave_thr_list[-1].time.astype('float64')
# cmap = matplotlib.cm.get_cmap('rainbow')
# color_wgts = np.linspace(0.0, 1.0, len(wave_thr_list))
# colors = ['red', 'yellow', 'green', 'blue', 'purple']
for node in nodes:
line_pts = node.object.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor='red') # cmap(time_weight)
ax.add_patch(patch)
ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'))
ax.set_extent(extent, crs=ccrs.PlateCarree())
yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())
figure_name = fn + '.png'
plt.savefig(figure_name, format='png')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
return figure_name
def plot_track_in_ts(track):
per_ts_wts = dict()
for edge in track.edges:
node = edge.parent
key = node.time.replace(':', '_')
if key in per_ts_wts:
per_ts_wts[key].append(node)
else:
per_ts_wts[key] = [node]
for time, nodes in per_ts_wts.items():
plot_wt_list(nodes, fn + time)
from enstools.feature.util.data_utils import get_subset_by_description
for set_idx, od_set in enumerate(graph_desc.sets):
# cv_set = get_subset_by_description(ds, od_set, '2d')
for set_tr, track in enumerate(od_set.tracks):
fn = cfg.plot_dir + 'set_' + str(set_idx) + "_track_" + str(set_tr)
plot_track_from_graph(track, fn, cv=None)