Skip to content
Snippets Groups Projects
plotting.py 12.2 KiB
Newer Older
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
import matplotlib.patches as patches
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from datetime import datetime
from enstools.feature.util.data_utils import pb_str_to_datetime
from pathlib import Path
Christoph.Fischer's avatar
Christoph.Fischer committed
import enstools.feature.identification.african_easterly_waves.configuration as cfg
# plots the wave state (all wavetroughs given specific timestep in a set) ts: pb2.Timestep
def plot_wavetroughs(ts, fig_name, cv=None):
    fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))

    x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
    y_ticks = [0, 10, 20, 30]
    extent = [-100, -45, -10, 35]

    if cv is not None:
        levelfc = np.asarray([0, 0.5, 1, 2, 3]) * 1e-5
        cv.plot.contourf(levels=levelfc, vmin=0, extend='max', cmap='Blues')

    # generate plot per pressure level, per time step

    # colors per time step
    # min_time = wave_thr_list[0].time.astype('float64')
    # max_time = wave_thr_list[-1].time.astype('float64')
    # cmap = matplotlib.cm.get_cmap('rainbow')
    # color_wgts = np.linspace(0.0, 1.0, len(wave_thr_list))
    # colors = ['red', 'yellow', 'green', 'blue', 'purple']

    vt = ts.valid_time
    for obj_idx, obj in enumerate(ts.objects):
        # time64 = wave.time.astype('float64')
        # time_weight = (time64 - min_time) / (max_time - min_time) if max_time > min_time else 1.0

        line_pts = obj.properties.line_pts
        line = patches.Path([[p.lon, p.lat] for p in line_pts])
        patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor='red') # cmap(time_weight)
        ax.add_patch(patch)

    ax.coastlines()
    ax.add_feature(cfeature.BORDERS.with_scale('50m'))
    ax.set_extent(extent, crs=ccrs.PlateCarree())
    yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
    xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())

    figure_name = fig_name.replace(':', '_') + '_aew_troughs.png'
    plt.savefig(figure_name, format='png')

    plt.figure().clear()
    plt.close()
    plt.cla()
    plt.clf()

    return figure_name


def plot_timesteps_from_desc(object_desc, cv=None):
    # plot for each set for each timestep everything detected.
    from enstools.feature.util.data_utils import get_subset_by_description

    for set_idx, od_set in enumerate(object_desc.sets):
Christoph.Fischer's avatar
Christoph.Fischer committed
        fn = cfg.plot_dir + "ts_set_" + str(set_idx)
        cv_set = get_subset_by_description(cv, od_set, '2d')

        for ts in od_set.timesteps:
            cv_st = cv_set.sel(time=ts.valid_time).cv
            fnt = fn + "_" + ts.valid_time
            print(fnt)
            # ts.validTime / .objects
            fout_name = plot_wavetroughs(ts, fnt, cv=cv_st)
            print("Plot to " + fout_name)
def plot_track(track, fn):

    nodes = [edge.parent for edge in track.graph.edges]
    fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))

    x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
    y_ticks = [0, 10, 20, 30]
    extent = [-100, -45, -10, 35]

    # generate plot per pressure level, per time step

    # colors per time step

    min_time = pb_str_to_datetime(nodes[0].time).timestamp()
    max_time = pb_str_to_datetime(nodes[-1].time).timestamp()
    cmap = matplotlib.cm.get_cmap('rainbow')
    color_wgts = np.linspace(0.0, 1.0, len(nodes))
    colors = ['red', 'yellow', 'green', 'blue', 'purple']

    for node_idx, node in enumerate(nodes):
        obj = node.object
        time_d = pb_str_to_datetime(node.time).timestamp()
        time_weight = (time_d - min_time) / (max_time - min_time) if max_time > min_time else 1.0

        line_pts = obj.properties.line_pts
        line = patches.Path([[p.lon, p.lat] for p in line_pts])
        patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor=cmap(time_weight))
        ax.add_patch(patch)

    ax.coastlines()
    ax.add_feature(cfeature.BORDERS.with_scale('50m'))
    ax.set_extent(extent, crs=ccrs.PlateCarree())
    yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
    xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())


    figure_name = cfg.plot_dir + fn  + '.png' # .replace(':', '_')
    plt.title(nodes[0].time + " - " + nodes[-1].time)
    print("Plot to " + str(figure_name))
    plt.savefig(figure_name, format='png')

    plt.figure().clear()
    plt.close()
    plt.cla()
    plt.clf()

    return figure_name

from collections import defaultdict
def plot_differences(set_graph, tracks, cv=None): # TODO CV too?
    # plot the differences of the total graph and the tracks
    # so check which WTs are part of a track and which have been dropped.

    # TODO
    #   join tracks list
    #   set_graph elements not in tracks
    #   for eaach timestep plot two mengen
    set_nodes = [e.parent for e in set_graph.graph.edges]
    is_in_set_nodes = [False] * len(set_nodes)

    for track in tracks:
        track_nodes = [e.parent for e in track.graph.edges]

        for track_node in track_nodes:
            try:
                # track node in list, set to True
                idx = set_nodes.index(track_node)
                is_in_set_nodes[idx] = True
            except ValueError:
                # not in it
                continue

    # lists which WTs are part of tracks, and which are not part of tracks
    wts_in_tracks_list = [set_nodes[i] for i, b in enumerate(is_in_set_nodes) if b]
    wts_not_in_tracks_list = [set_nodes[i] for i, b in enumerate(is_in_set_nodes) if not b]

    # make these lists to dicts with date as key
    wts_in_tracks = defaultdict(list)
    for wt_in_track in wts_in_tracks_list:
        wts_in_tracks[wt_in_track.time].append(wt_in_track)
    wts_not_in_tracks = defaultdict(list)
    for wt_not_in_track in wts_not_in_tracks_list:
        wts_not_in_tracks[wt_not_in_track.time].append(wt_not_in_track)

    dates = set()
    dates.update(wts_in_tracks.keys())
    dates.update(wts_not_in_tracks.keys())
    dates_list = list(dates)
    dates_list.sort()

    for date in dates_list:
        fig_name = cfg.plot_dir + "part_of_wave_" + date.replace(':', '_') + ".png"
        cv_ss = cv.sel(time=date)
        plot_ts_part_of_track(wts_in_tracks[date], wts_not_in_tracks[date], fig_name, cv_ss)



def plot_ts_part_of_track(wts_part_of_tracks, wt_not_part_of_tracks, fig_name, cv=None):

    fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))

    x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
    y_ticks = [0, 10, 20, 30]
    extent = [-100, -45, -10, 35]

    if cv is not None:
        levelfc = np.asarray([0, 0.5, 1, 2, 3]) * 1e-5
        cv.plot.contourf(levels=levelfc, vmin=0, extend='max', cmap='Blues')

    # generate plot per pressure level, per time step

    # colors per time step
    # min_time = wave_thr_list[0].time.astype('float64')
    # max_time = wave_thr_list[-1].time.astype('float64')
    # cmap = matplotlib.cm.get_cmap('rainbow')
    # color_wgts = np.linspace(0.0, 1.0, len(wave_thr_list))
    # colors = ['red', 'yellow', 'green', 'blue', 'purple']

    for obj_idx, node in enumerate(wts_part_of_tracks):
        line_pts = node.object.properties.line_pts
        line = patches.Path([[p.lon, p.lat] for p in line_pts])
        patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor='lime') # cmap(time_weight)
        ax.add_patch(patch)

    for obj_idx, node in enumerate(wt_not_part_of_tracks):
        line_pts = node.object.properties.line_pts
        line = patches.Path([[p.lon, p.lat] for p in line_pts])
        patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor='red') # cmap(time_weight)
        ax.add_patch(patch)

    ax.coastlines()
    ax.add_feature(cfeature.BORDERS.with_scale('50m'))
    ax.set_extent(extent, crs=ccrs.PlateCarree())
    yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
    xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())

    print("Save to " +  fig_name)
    plt.savefig(fig_name, format='png')

    plt.figure().clear()
    plt.close()
    plt.cla()
    plt.clf()

    return
def plot_track_from_graph(track_desc, fig_name_prefix, cv=None):

    nodes = [edge.parent for edge in track_desc.edges]
    fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))

    x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
    y_ticks = [0, 10, 20, 30]
    extent = [-100, -45, -10, 35]

    if cv is not None:
        cv = cv.isel(time=0)
        levelfc = np.asarray([0, 0.5, 1, 2, 3]) * 1e-5
        cv.plot.contourf(levels=levelfc, vmin=0, extend='max', cmap='Blues')

    # generate plot per pressure level, per time step

    # colors per time step

    min_time = pb_str_to_datetime(nodes[0].time).timestamp()
    max_time = pb_str_to_datetime(nodes[-1].time).timestamp()
    cmap = matplotlib.cm.get_cmap('rainbow')
    color_wgts = np.linspace(0.0, 1.0, len(nodes))
    colors = ['red', 'yellow', 'green', 'blue', 'purple']
    for node_idx, node in enumerate(nodes):
        obj = node.object
        time_d = pb_str_to_datetime(node.time).timestamp()
        time_weight = (time_d - min_time) / (max_time - min_time) if max_time > min_time else 1.0
        line_pts = obj.properties.line_pts
        line = patches.Path([[p.lon, p.lat] for p in line_pts])
        patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor=cmap(time_weight))
        ax.add_patch(patch)

    ax.coastlines()
    ax.add_feature(cfeature.BORDERS.with_scale('50m'))
    ax.set_extent(extent, crs=ccrs.PlateCarree())
    yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
    xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())

    figure_name = fig_name_prefix  + '_troughs.png' # .replace(':', '_')
    plt.title(nodes[0].time + " - " + nodes[-1].time)
    print("Plot to " + str(figure_name))
    plt.savefig(figure_name, format='png')

    plt.figure().clear()
    plt.close()
    plt.cla()
    plt.clf()

    return figure_name

def plot_wt_list(nodes, fn):
    fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))

    x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
    y_ticks = [0, 10, 20, 30]
    extent = [-100, -45, -10, 35]

    # generate plot per pressure level, per time step

    # colors per time step
    # min_time = wave_thr_list[0].time.astype('float64')
    # max_time = wave_thr_list[-1].time.astype('float64')
    # cmap = matplotlib.cm.get_cmap('rainbow')
    # color_wgts = np.linspace(0.0, 1.0, len(wave_thr_list))
    # colors = ['red', 'yellow', 'green', 'blue', 'purple']

    for node in nodes:
        line_pts = node.object.properties.line_pts
        line = patches.Path([[p.lon, p.lat] for p in line_pts])
        patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor='red')  # cmap(time_weight)
        ax.add_patch(patch)

    ax.coastlines()
    ax.add_feature(cfeature.BORDERS.with_scale('50m'))
    ax.set_extent(extent, crs=ccrs.PlateCarree())
    yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
    xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())

    figure_name = fn + '.png'
    plt.savefig(figure_name, format='png')

    plt.figure().clear()
    plt.close()
    plt.cla()
    plt.clf()

    return figure_name

def plot_track_in_ts(track):
Christoph.Fischer's avatar
Christoph.Fischer committed
    
    fn = cfg.plot_dir + 'singletrack_'

    per_ts_wts = dict()
    for edge in track.edges:
        node = edge.parent
        key = node.time.replace(':', '_')
        if key in per_ts_wts:
            per_ts_wts[key].append(node)
        else:
            per_ts_wts[key] = [node]

    for time, nodes in per_ts_wts.items():
        plot_wt_list(nodes, fn + time)
Christoph.Fischer's avatar
Christoph.Fischer committed
def plot_tracks_from_desc(graph_desc, ds=None):

    from enstools.feature.util.data_utils import get_subset_by_description

    for set_idx, od_set in enumerate(graph_desc.sets):

        # cv_set = get_subset_by_description(ds, od_set, '2d')
        for set_tr, track in enumerate(od_set.tracks):
Christoph.Fischer's avatar
Christoph.Fischer committed
            fn = cfg.plot_dir + 'set_' + str(set_idx) + "_track_" + str(set_tr)
            plot_track_from_graph(track, fn, cv=None)