Newer
Older
from matplotlib import pyplot as plt
import numpy as np
from PIL import Image
import matplotlib as mpl
import matplotlib.patches as patches
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from datetime import datetime
from enstools.feature.util.data_utils import pb_str_to_datetime
from pathlib import Path
import enstools.feature.identification.african_easterly_waves.configuration as cfg
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
def get_kitweather_rain_cm(ens_mode):
rgb_colors = []
pathtotxtfile = '/project/meteo/w2w/C3/fischer/belanger/enstools-feature/enstools/feature/identification/african_easterly_waves/' # '/home/iconeps/icon_data/additional_data/colorpalettes/'
filename_colorpalette = 'colorpalette_dyamond_prec_rate.txt'
if ens_mode:
filename_colorpalette = 'colormap_WhiteBeigeGreenBlue_16.txt'
else:
filename_colorpalette = 'colorpalette_dyamond_prec_rate.txt'
with open(pathtotxtfile + filename_colorpalette, 'r') as f:
lines = f.readlines()
for i, line in enumerate(lines):
rgb_colors.append([float(line[0:3])/255, float(line[4:7])/255, float(line[8:11])/255, 1])
rgb_colors = [[1, 1, 1, 0]] + rgb_colors + [[0.35, 0, 0.4, 1]]
cmap = mpl.colors.ListedColormap(rgb_colors[1:-1]) # , name=colorpalette
cmap = cmap.with_extremes(bad='white', under=rgb_colors[0], over=rgb_colors[-1])
if ens_mode:
levels = [0.01,0.02,0.05,0.1,0.12,0.15,0.2,0.25,0.3,0.4,0.5,0.75]
else:
levels = [0.1,0.2,0.3,0.5,1,2,3,5,10,20,30,50]
norm = mpl.colors.BoundaryNorm(levels, cmap.N)
return levels, cmap, norm
def crop_top_bottom_whitespace(path):
# pixels from image left where a vertical column is scanned from top and bottom for non-white pixels
x_scan_position = 450
add_bottom_delta = 20
im = Image.open(path)
image_array_y = np.where(np.asarray(im.convert('L')) < 255, 1, 0)[:, x_scan_position]
vmargins = [np.where(image_array_y[2:] == 1)[0][0] + 2 + 1,
image_array_y[:-2].shape[0] - np.where(image_array_y[:-2] == 1)[0][-1] + 2]
im_cropped = Image.new('RGBA',(im.size[0], im.size[1] - vmargins[0] - vmargins[1] + add_bottom_delta), (0, 0, 0, 0))
im_cropped.paste(im.crop((0, vmargins[0], im.size[0], im.size[1] - vmargins[1] + add_bottom_delta)), (0, 0))
im.close()
im_cropped.save(path, 'png')
im_cropped.close()
return
## MAIN PLOTTING FUNC FOR KITWEATHER PLOTS - DETERMINISTIC MODE
def plot_ts_filtered_waves(wts_part_of_tracks, fig_name, ds=None, tp=None, ens_mode=False):
from timeit import default_timer as timer
t1 = timer()
resolution = 1600
cbar_space_px = 80
subplotparameters = mpl.figure.SubplotParams(left=0, bottom=0, right=1 - cbar_space_px / resolution, top=1,
wspace=0, hspace=0)
fig, ax = plt.subplots(figsize=(resolution / 100, resolution / 100),
dpi=100,
subplotpars=subplotparameters,
subplot_kw=dict(projection = ccrs.PlateCarree()))
extent = [-100, 35, -10, 35]
levels_rain, rain_cm, norm = get_kitweather_rain_cm(ens_mode)
distance_plot_to_cbar = 0.010
axins = ax.inset_axes([1 + distance_plot_to_cbar, 0.05, 0.015, 0.93],
transform=ax.transAxes)
ticks_list = levels_rain
cbar = fig.colorbar(mpl.cm.ScalarMappable(cmap=rain_cm, norm=norm),
cax=axins, extend='both', extendfrac=0.03,
ticks=ticks_list)
unit_text = '>1 mm/hr\nprobability' if ens_mode else 'mm/hr'
y_off = -0.075 if ens_mode else -0.06
axins.text(0.25, y_off, unit_text, transform=axins.transAxes,
horizontalalignment='left', verticalalignment='center')
t2 = timer()
if ds is not None and not ens_mode: # no uv for ens
# print("Before dec")
# streamplot_func = _add_transform_first_to_streamplot(ds.plot.streamplot)
# print("After dec")
ds.plot.streamplot(x='lon', y='lat', u='u', v='v', linewidth=0.6,
arrowsize = 0.5,
density=6,
color='black') # , transform_first=True not working, or is already implemented. still slow.
t3 = timer()
if tp is not None:
# transform to mm
tp.plot.contourf(levels=levels_rain, extend='max', subplot_kws={'transform_first': True},
cmap=rain_cm, norm=norm, add_colorbar=False)
t4 = timer()
# generate plot per pressure level, per time step
for obj_idx, node in enumerate(wts_part_of_tracks):
line_pts = node.object.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
if ens_mode: # ensemble way thinner
patch = patches.PathPatch(line, linewidth=1, facecolor='none', edgecolor='crimson')
else:
patch = patches.PathPatch(line, linewidth=3, facecolor='none', edgecolor='crimson') # cmap(time_weight)
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
ax.add_patch(patch)
t5 = timer()
# ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'), linewidth=0.3)
ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.3)
ax.set_extent(extent, crs=ccrs.PlateCarree())
ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor=list(np.array([255, 225, 171])/255))
ax.get_xaxis().set_ticklabels([])
ax.get_yaxis().set_ticklabels([])
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=0.5, color='gray', alpha=0.5, linestyle='--')
gl.top_labels = False
gl.right_labels = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
ax.set_title("")
fig.tight_layout()
plt.savefig(fig_name, format='png', backend='agg')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
crop_top_bottom_whitespace(fig_name)
t6 = timer()
"""
print("Init: " + str(t2 - t1))
print("Streamplot: " + str(t3 - t2))
print("Rain: " + str(t4 - t3))
print("Wavetroughs: " + str(t5 - t4))
print("Finalize: " + str(t6 - t5))
print("Saved to " + fig_name)
exit()
"""
print("Saved to " + fig_name)
return
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
## MAIN PLOTTING FUNC FOR KITWEATHER PLOTS - ENSEMBLE MODE
def plot_ts_filtered_waves(wts_part_of_tracks, fig_name, ds=None, tp=None):
from timeit import default_timer as timer
t1 = timer()
resolution = 1600
cbar_space_px = 80
subplotparameters = mpl.figure.SubplotParams(left=0, bottom=0, right=1 - cbar_space_px / resolution, top=1,
wspace=0, hspace=0)
fig, ax = plt.subplots(figsize=(resolution / 100, resolution / 100),
dpi=100,
subplotpars=subplotparameters,
subplot_kw=dict(projection = ccrs.PlateCarree()))
extent = [-100, 35, -10, 35]
levels_rain, rain_cm, norm = get_kitweather_rain_cm()
distance_plot_to_cbar = 0.010
axins = ax.inset_axes([1 + distance_plot_to_cbar, 0.05, 0.015, 0.93],
transform=ax.transAxes)
ticks_list = levels_rain
cbar = fig.colorbar(mpl.cm.ScalarMappable(cmap=rain_cm, norm=norm),
cax=axins, extend='both', extendfrac=0.03,
ticks=ticks_list)
axins.text(0.5, -0.06, 'mm/hr', transform=axins.transAxes,
horizontalalignment='left', verticalalignment='center')
t2 = timer()
if ds is not None:
# print("Before dec")
# streamplot_func = _add_transform_first_to_streamplot(ds.plot.streamplot)
# print("After dec")
ds.plot.streamplot(x='lon', y='lat', u='u', v='v', linewidth=0.6,
arrowsize = 0.5,
density=6,
color='black') # , transform_first=True not working, or is already implemented. still slow.
t3 = timer()
if tp is not None:
# transform to mm
tp.plot.contourf(levels=levels_rain, extend='max', subplot_kws={'transform_first': True},
cmap=rain_cm, norm=norm, add_colorbar=False)
t4 = timer()
# generate plot per pressure level, per time step
for obj_idx, node in enumerate(wts_part_of_tracks):
line_pts = node.object.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
patch = patches.PathPatch(line, linewidth=3, facecolor='none', edgecolor='crimson') # cmap(time_weight)
ax.add_patch(patch)
t5 = timer()
# ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'), linewidth=0.3)
ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.3)
ax.set_extent(extent, crs=ccrs.PlateCarree())
ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor=list(np.array([255, 225, 171])/255))
ax.get_xaxis().set_ticklabels([])
ax.get_yaxis().set_ticklabels([])
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=0.5, color='gray', alpha=0.5, linestyle='--')
gl.top_labels = False
gl.right_labels = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
ax.set_title("")
fig.tight_layout()
plt.savefig(fig_name, format='png', backend='agg')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
crop_top_bottom_whitespace(fig_name)
t6 = timer()
print("Saved to " + fig_name)
return
"""
# plots the wave state (all wavetroughs given specific timestep in a set) ts: pb2.Timestep
def plot_wavetroughs(ts, fig_name, cv=None):
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))
x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
y_ticks = [0, 10, 20, 30]
extent = [-100, -45, -10, 35]
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
if cv is not None:
levelfc = np.asarray([0, 0.5, 1, 2, 3]) * 1e-5
cv.plot.contourf(levels=levelfc, vmin=0, extend='max', cmap='Blues')
# generate plot per pressure level, per time step
# colors per time step
# min_time = wave_thr_list[0].time.astype('float64')
# max_time = wave_thr_list[-1].time.astype('float64')
# cmap = matplotlib.cm.get_cmap('rainbow')
# color_wgts = np.linspace(0.0, 1.0, len(wave_thr_list))
# colors = ['red', 'yellow', 'green', 'blue', 'purple']
vt = ts.valid_time
for obj_idx, obj in enumerate(ts.objects):
# time64 = wave.time.astype('float64')
# time_weight = (time64 - min_time) / (max_time - min_time) if max_time > min_time else 1.0
line_pts = obj.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor='red') # cmap(time_weight)
ax.add_patch(patch)
ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'))
ax.set_extent(extent, crs=ccrs.PlateCarree())
yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())
figure_name = fig_name.replace(':', '_') + '_aew_troughs.png'
plt.savefig(figure_name, format='png')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
return figure_name
def plot_timesteps_from_desc(object_desc, cv=None):
# plot for each set for each timestep everything detected.
from enstools.feature.util.data_utils import get_subset_by_description
for set_idx, od_set in enumerate(object_desc.sets):
cv_set = get_subset_by_description(cv, od_set, '2d')
for ts in od_set.timesteps:
cv_st = cv_set.sel(time=ts.valid_time).cv
fnt = fn + "_" + ts.valid_time
print(fnt)
# ts.validTime / .objects
fout_name = plot_wavetroughs(ts, fnt, cv=cv_st)
nodes = [edge.parent for edge in track.edges]
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))
x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
y_ticks = [0, 10, 20, 30]
extent = [-100, -45, -10, 35]
# generate plot per pressure level, per time step
# colors per time step
min_time = pb_str_to_datetime(nodes[0].time).timestamp()
max_time = pb_str_to_datetime(nodes[-1].time).timestamp()
cmap = matplotlib.cm.get_cmap('rainbow')
color_wgts = np.linspace(0.0, 1.0, len(nodes))
colors = ['red', 'yellow', 'green', 'blue', 'purple']
for node_idx, node in enumerate(nodes):
obj = node.object
time_d = pb_str_to_datetime(node.time).timestamp()
time_weight = (time_d - min_time) / (max_time - min_time) if max_time > min_time else 1.0
line_pts = obj.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor=cmap(time_weight))
ax.add_patch(patch)
ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'))
ax.set_extent(extent, crs=ccrs.PlateCarree())
yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())
figure_name = cfg.plot_dir + fn + '.png' # .replace(':', '_')
plt.title(nodes[0].time + " - " + nodes[-1].time)
print("Plot to " + str(figure_name))
plt.savefig(figure_name, format='png')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
return figure_name
from collections import defaultdict
def plot_differences(set_graph, tracks, ds=None, tp=None, plot_prefix=None):
print("plot_differences() deprecated")
exit() # OLD FUNC.
# plot the differences of the total graph and the tracks
# so check which WTs are part of a track and which have been dropped.
set_nodes = [e.parent for e in set_graph.graph.edges]
is_in_set_nodes = [False] * len(set_nodes)
for track in tracks:
track_nodes = [e.parent for e in track.edges]
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
for track_node in track_nodes:
try:
# track node in list, set to True
idx = set_nodes.index(track_node)
is_in_set_nodes[idx] = True
except ValueError:
# not in it
continue
# lists which WTs are part of tracks, and which are not part of tracks
wts_in_tracks_list = [set_nodes[i] for i, b in enumerate(is_in_set_nodes) if b]
wts_not_in_tracks_list = [set_nodes[i] for i, b in enumerate(is_in_set_nodes) if not b]
# make these lists to dicts with date as key
wts_in_tracks = defaultdict(list)
for wt_in_track in wts_in_tracks_list:
wts_in_tracks[wt_in_track.time].append(wt_in_track)
wts_not_in_tracks = defaultdict(list)
for wt_not_in_track in wts_not_in_tracks_list:
wts_not_in_tracks[wt_not_in_track.time].append(wt_not_in_track)
dates = set()
dates.update(wts_in_tracks.keys())
dates.update(wts_not_in_tracks.keys())
dates_list = list(dates)
dates_list.sort()
if plot_prefix is None:
plot_prefix = cfg.plot_dir
# create subdirs if needed
plot_dir = '/'.join(plot_prefix.split('/')[:-1]) + '/'
os.makedirs(plot_dir, exist_ok=True)
fig_name = plot_prefix + date[0:4] + date[5:7] + date[8:10] + "T" + date[11:13] + ".png"
try:
ds_ss = ds.sel(time=date)
except (KeyError, AttributeError) as e:
print("No ds data for " + str(date))
ds_ss = None
try:
tp_ss = tp.sel(time=date).tp
except (KeyError, AttributeError) as e:
print("No rain data for " + str(date))
tp_ss = None
plot_ts_filtered_waves(wts_in_tracks[date], fig_name, ds=ds_ss, tp=tp_ss) # wts_not_in_tracks[date],
# except KeyError:
# print("No rain data for " + str(date))
# tp_ss = None
# plot_ts_part_of_track(wts_in_tracks[date], wts_not_in_tracks[date], fig_name, ds=ds_ss, tp=tp_ss)
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import pandas as pd
def plot_kw(tracks, ds, tp=None, plot_prefix=None, ens_mode=False):
dates_dt = pd.to_datetime(ds.time.values)
wavetroughs_in_tracks = dict() # by time
for date in dates_dt:
wavetroughs_in_tracks[date] = []
# put nodes of all tracks in buckets by time
for track in tracks:
track_nodes = [e.parent for e in track.edges]
for track_node in track_nodes:
track_node_time = pb_str_to_datetime(track_node.time)
wavetroughs_in_tracks[track_node_time].append(track_node)
if plot_prefix is None:
plot_prefix = cfg.plot_dir
# create subdirs if needed
else:
plot_dir = '/'.join(plot_prefix.split('/')[:-1]) + '/'
os.makedirs(plot_dir, exist_ok=True)
if ens_mode and tp is not None:
tp_thr = (tp > cfg.ens_rain_threshold).astype(dtype=float)
tp_prob = tp_thr.mean(dim="member") # TODO get_member_dim?
tp = tp_prob
# call plotting for each date
for date in dates_dt:
fig_name = plot_prefix + date.strftime("%Y%m%dT%H") + ".png"
ds_ss = ds.sel(time=date).squeeze()
try:
tp_ss = tp.sel(time=date)
except (KeyError, AttributeError) as e:
print("No rain data for " + str(date))
tp_ss = None
plot_ts_filtered_waves(wavetroughs_in_tracks[date], fig_name, ds=ds_ss, tp=tp_ss, ens_mode=ens_mode)
def plot_track_from_graph(track_desc, fig_name_prefix, cv=None):
nodes = [edge.parent for edge in track_desc.edges]
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))
x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
y_ticks = [0, 10, 20, 30]
extent = [-100, -45, -10, 35]
if cv is not None:
cv = cv.isel(time=0)
levelfc = np.asarray([0, 0.5, 1, 2, 3]) * 1e-5
cv.plot.contourf(levels=levelfc, vmin=0, extend='max', cmap='Blues')
# generate plot per pressure level, per time step
# colors per time step
min_time = pb_str_to_datetime(nodes[0].time).timestamp()
max_time = pb_str_to_datetime(nodes[-1].time).timestamp()
cmap = matplotlib.cm.get_cmap('rainbow')
color_wgts = np.linspace(0.0, 1.0, len(nodes))
colors = ['red', 'yellow', 'green', 'blue', 'purple']
for node_idx, node in enumerate(nodes):
obj = node.object
time_d = pb_str_to_datetime(node.time).timestamp()
time_weight = (time_d - min_time) / (max_time - min_time) if max_time > min_time else 1.0
line_pts = obj.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor=cmap(time_weight))
ax.add_patch(patch)
ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'))
ax.set_extent(extent, crs=ccrs.PlateCarree())
yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())
figure_name = fig_name_prefix + '_troughs.png' # .replace(':', '_')
plt.title(nodes[0].time + " - " + nodes[-1].time)
print("Plot to " + str(figure_name))
plt.savefig(figure_name, format='png')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
return figure_name
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
def plot_wt_list(nodes, fn):
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 4), subplot_kw=dict(projection=ccrs.PlateCarree()))
x_ticks = [-100, -95, -85, -75, -65, -55, -45, -35, -25, -15, -5, 5, 15, 25, 35]
y_ticks = [0, 10, 20, 30]
extent = [-100, -45, -10, 35]
# generate plot per pressure level, per time step
# colors per time step
# min_time = wave_thr_list[0].time.astype('float64')
# max_time = wave_thr_list[-1].time.astype('float64')
# cmap = matplotlib.cm.get_cmap('rainbow')
# color_wgts = np.linspace(0.0, 1.0, len(wave_thr_list))
# colors = ['red', 'yellow', 'green', 'blue', 'purple']
for node in nodes:
line_pts = node.object.properties.line_pts
line = patches.Path([[p.lon, p.lat] for p in line_pts])
patch = patches.PathPatch(line, linewidth=2, facecolor='none', edgecolor='red') # cmap(time_weight)
ax.add_patch(patch)
ax.coastlines()
ax.add_feature(cfeature.BORDERS.with_scale('50m'))
ax.set_extent(extent, crs=ccrs.PlateCarree())
yt1 = ax.set_yticks(y_ticks, crs=ccrs.PlateCarree())
xt1 = ax.set_xticks(x_ticks, crs=ccrs.PlateCarree())
figure_name = fn + '.png'
plt.savefig(figure_name, format='png')
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
return figure_name
def plot_track_in_ts(track):
per_ts_wts = dict()
for edge in track.edges:
node = edge.parent
key = node.time.replace(':', '_')
if key in per_ts_wts:
per_ts_wts[key].append(node)
else:
per_ts_wts[key] = [node]
for time, nodes in per_ts_wts.items():
plot_wt_list(nodes, fn + time)
from enstools.feature.util.data_utils import get_subset_by_description
for set_idx, od_set in enumerate(graph_desc.sets):
# cv_set = get_subset_by_description(ds, od_set, '2d')
for set_tr, track in enumerate(od_set.tracks):
fn = cfg.plot_dir + 'set_' + str(set_idx) + "_track_" + str(set_tr)
plot_track_from_graph(track, fn, cv=None)