Skip to content
Snippets Groups Projects
Commit 12a83b4e authored by lorenzennio's avatar lorenzennio
Browse files

Fitting kind of works

parent ea135458
No related branches found
No related tags found
No related merge requests found
...@@ -81,8 +81,12 @@ class Analysis: ...@@ -81,8 +81,12 @@ class Analysis:
y = B[1] + np.sqrt(B[0]**2 - (z-B[2])**2) y = B[1] + np.sqrt(B[0]**2 - (z-B[2])**2)
return y return y
def pol(self, B, x):
return B[0] + B[1]*x + B[2]*(x**2) + B[3]*(x**3)
def xFit(self): def xFit(self):
xModel = odr.Model(self.xEOM) xModel = odr.Model(self.pol)#self.xEOM)
xData = odr.RealData(self.xPoints['Mean'], xData = odr.RealData(self.xPoints['Mean'],
self.zPoints['Mean'], self.zPoints['Mean'],
sx = self.xPoints['Error'], sx = self.xPoints['Error'],
...@@ -90,6 +94,10 @@ class Analysis: ...@@ -90,6 +94,10 @@ class Analysis:
xODR = odr.ODR(xData, xModel, beta0=[1, 100, 100, 100]) xODR = odr.ODR(xData, xModel, beta0=[1, 100, 100, 100])
xOUT = xODR.run() xOUT = xODR.run()
xOUT.pprint() xOUT.pprint()
print(xOUT.beta)
plt.plot(self.pol(xOUT.beta, self.xPoints['Mean']), self.xPoints['Mean'])
plt.plot(self.zPoints['Mean']+5, self.xPoints['Mean'])
plt.show()
""" """
xPopt, xPcov = curve_fit(self.xEOM, xPopt, xPcov = curve_fit(self.xEOM,
self.xPoints['Mean'], self.xPoints['Mean'],
...@@ -127,6 +135,9 @@ class Analysis: ...@@ -127,6 +135,9 @@ class Analysis:
yODR = odr.ODR(yData, yModel, beta0=[1e3, 100, 100]) yODR = odr.ODR(yData, yModel, beta0=[1e3, 100, 100])
yOUT = yODR.run() yOUT = yODR.run()
yOUT.pprint() yOUT.pprint()
plt.plot(self.zPoints['Mean'], self.yEOM(yOUT.beta, self.zPoints['Mean']))
plt.plot(self.zPoints['Mean'], self.yPoints['Mean'])
plt.show()
""" """
self.results['R'][0] = yPopt[0] self.results['R'][0] = yPopt[0]
self.results['R'][1] = yPerr[0] self.results['R'][1] = yPerr[0]
......
...@@ -7,30 +7,30 @@ class testAnalysis(unittest.TestCase): ...@@ -7,30 +7,30 @@ class testAnalysis(unittest.TestCase):
""" """
A simple test to check the angle means ans error computation. A simple test to check the angle means ans error computation.
""" """
def testxFit(self): def testxFit(self):
#ang = np.array([6,5,6,5,8,4,8,4,7,1,7,1,10,3,10,3,None,None,None,None]) #ang = np.array([6,5,6,5,8,4,8,4,7,1,7,1,10,3,10,3,None,None,None,None])
#ang = np.reshape(ang, (5,2,2)) #ang = np.reshape(ang, (5,2,2))
A = Analysis() A = Analysis()
#self.assertEqual(A.results['Mean'][0], 5.5) #self.assertEqual(A.results['Mean'][0], 5.5)
#self.assertEqual(A.results['Error'][0], 0.5) #self.assertEqual(A.results['Error'][0], 0.5)
z = np.arange(0, 30) x = np.arange(0, 6)
y = A.yEOM([1000,1,1], z) z = A.xEOM([1,20,10,100], x)
#plt.plot(z,y) #plt.plot(z,x)
#plt.show() #plt.show()
Data = [] Data = []
for i in range(0,len(z)): for i in range(0,len(z)):
err =0.01* np.random.random(size=(4)) err =0.01* np.random.random(size=(4))
#print(err) #print(err)
Data.append([[0,0], [y[i]+err[0],y[i]-err[1]], [z[i]+err[2], z[i]-err[3]]]) Data.append([[x[i]+err[0],x[i]-err[1]], [0,0], [z[i]+err[2], z[i]-err[3]]])
#np.concatenate((Data, #np.concatenate((Data,
# [[0,0], [y[i]+0.1,y[i]-0.1], [z[i]+0.1, z[i]-0.1]]), axis=0) # [[0,0], [y[i]+0.1,y[i]-0.1], [z[i]+0.1, z[i]-0.1]]), axis=0)
Data = np.array(Data) Data = np.array(Data)
A.fill(Data) A.fill(Data)
A.yFit() A.xFit()
#print(y) #print(y)
#print(z) #print(z)
#print(Data) #print(Data)
...@@ -43,22 +43,22 @@ class testAnalysis(unittest.TestCase): ...@@ -43,22 +43,22 @@ class testAnalysis(unittest.TestCase):
#self.assertEqual(A.results['Error'][0], 0.5) #self.assertEqual(A.results['Error'][0], 0.5)
x = np.arange(0, 10, 0.1) z = np.arange(0, 6)
z = A.xEOM([1,10,10,100], x) y = A.yEOM([1000,100,100], z)
#plt.plot(z,x) #plt.plot(z,y)
#plt.show() #plt.show()
Data = [] Data = []
for i in range(0,len(z)): for i in range(0,len(z)):
err =0.01* np.random.random(size=(4)) err =0.001* np.random.random(size=(4))
#print(err) #print(err)
Data.append([[x[i]+err[0],x[i]-err[1]], [0,0], [z[i]+err[2], z[i]-err[3]]]) Data.append([[0,0], [y[i]+err[0],y[i]-err[1]], [z[i]+err[2], z[i]-err[3]]])
#np.concatenate((Data, #np.concatenate((Data,
# [[0,0], [y[i]+0.1,y[i]-0.1], [z[i]+0.1, z[i]-0.1]]), axis=0) # [[0,0], [y[i]+0.1,y[i]-0.1], [z[i]+0.1, z[i]-0.1]]), axis=0)
Data = np.array(Data) Data = np.array(Data)
A.fill(Data) A.fill(Data)
A.xFit() A.yFit()
#print(y) #print(y)
#print(z) #print(z)
#print(Data) #print(Data)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment