diff --git a/templates/event-generator/adapt_member.sh b/templates/event-generator/adapt_member.sh index 77945ebd0bf4c1f2adf258b9f246f38feb683537..923bbbc316bfea6f14444c7ba11bbeed47457111 100644 --- a/templates/event-generator/adapt_member.sh +++ b/templates/event-generator/adapt_member.sh @@ -57,4 +57,12 @@ integrate_sst_to_extpar "${INTERPOLATED_SST}" "${EXTERNAL_PARAMETERS_FILE}" #old_integrate_sst_to_analysis "${INTERPOLATED_SST}" "${ANALYSIS_FILE}" # Integrate sst to analysis -integrate_sst_to_analysis "${DESTINATION_GRID}" "${ANALYSIS_FILE}" +#integrate_sst_to_analysis "${DESTINATION_GRID}" "${ANALYSIS_FILE}" + + +python ${PROJ_FOLDER}/templates/event-generator/icon-remap-helper.py --src-grid ${DESTINATION_GRID} \ + --dst-grid ${DESTINATION_GRID} \ + --source ${ANALYSIS_FILE} \ + --dest . \ + --output-format nc \ + --rename "analysis.nc" \ No newline at end of file diff --git a/templates/event-generator/incon-remap-helper.py b/templates/event-generator/incon-remap-helper.py new file mode 100644 index 0000000000000000000000000000000000000000..3637f8ab4875c9257e11b30978a12cc21a514a3e --- /dev/null +++ b/templates/event-generator/incon-remap-helper.py @@ -0,0 +1,282 @@ +#!/usr/bin/env python3 +""" +automatically create namelist files for icon grid to icon grid remapping and run iconremap +""" +import argparse +from enstools.io import read, write +from enstools.interpolation import nearest_neighbour +from subprocess import run +import logging +import os +import numpy as np +import xarray + + +def load_vgrid(grid_file): + """ + read HHL from an input file and calculate also the full level heights + """ + logging.info(f"Reading input file with vertical grid information {grid_file}...") + data = read(grid_file) + if not "HHL" in data: + logging.error(f"HHL not found in {grid_file}") + exit(-1) + + # store both result arrays in one dataset without time dimension + result = xarray.Dataset() + result["HHL"] = data["HHL"][0, ...].compute() + + FHL = xarray.DataArray(np.empty((result["HHL"].shape[0] - 1, result["HHL"].shape[1])), name="FHL", + dims=("generalVertical2", "cell")) + for layer in range(FHL.shape[0]): + FHL[layer, ...] = (result["HHL"][layer, ...] + result["HHL"][layer + 1, ...]) / 2 + result["FHL"] = FHL + return result + + +def vertical_interpolation_one_variable(src_hl, dst_hl, values): + """ + perform the interpolation using numpy.interp on one variable + """ + # perform the interpolation gridpointwise + result = np.empty((values.shape[0], dst_hl.shape[0], values.shape[2])) + for time in range(values.shape[0]): + for cell in range(values.shape[2]): + # all the flipping is neccessary as the function interp expects increasing values + result[time, :, cell] = np.flip(np.interp(np.flip(dst_hl[:, cell], 0), np.flip(src_hl[:, cell], 0), + np.flip(values.values[time, :, cell], 0)), 0) + + # create the new xarray DataArray + new_array = xarray.DataArray(result, dims=values.dims, name=values.name, attrs=values.attrs) + return new_array + + +def vertical_interpolation(src_vgrid, dst_vgrid, input_name, output_name): + """ + perform vertical interpolation + """ + logging.info("starting vertical interpolation...") + # read source and destination grids + src_vgrid_hl = load_vgrid(src_vgrid) + dst_vgrid_hl = load_vgrid(dst_vgrid) + src_hhl_dim = src_vgrid_hl["HHL"].shape[0] + src_fhl_dim = src_vgrid_hl["FHL"].shape[0] + dst_hhl_dim = dst_vgrid_hl["HHL"].shape[0] + dst_fhl_dim = dst_vgrid_hl["FHL"].shape[0] + + # read input file + infile = read(input_name).compute() + + # create output file + outfile = xarray.Dataset() + + # loop over all variables of the input file + for var in infile.variables: + # VN is special, it is defined on the edges of the grid. find nearest hgith coordinates + if var == "VN" and infile[var].shape[1] == src_fhl_dim: + logging.info(f" -> interpolating {var} onto FHL") + logging.info(" -> interpolating of height array to the edges") + fint = nearest_neighbour(infile["clon"], infile["clat"], infile["elon"], infile["elat"], + src_grid="unstructured", dst_grid="unstructured", npoints=2, method="mean") + src_vgrid_fhl_vn = fint(src_vgrid_hl["FHL"]) + dst_vgrid_fhl_vn = fint(dst_vgrid_hl["FHL"]) + outfile[var] = vertical_interpolation_one_variable(src_vgrid_fhl_vn.values, dst_vgrid_fhl_vn.values, + infile[var]) + elif not var.startswith("height") and len(infile[var].shape) > 1 and infile[var].shape[1] == src_hhl_dim: + logging.info(f" -> interpolating {var} onto HHL") + outfile[var] = vertical_interpolation_one_variable(src_vgrid_hl["HHL"].values, dst_vgrid_hl["HHL"].values, + infile[var]) + continue + elif not var.startswith("height") and len(infile[var].shape) > 1 and infile[var].shape[1] == src_fhl_dim: + logging.info(f" -> interpolating {var} onto FHL") + outfile[var] = vertical_interpolation_one_variable(src_vgrid_hl["FHL"].values, dst_vgrid_hl["FHL"].values, + infile[var]) + continue + else: + if var.startswith("height") and infile[var].shape[0] == src_hhl_dim: + if len(infile[var].shape) == 2: + continue + logging.info(f" -> replacing old height coordinate '{var}'") + outfile[var] = xarray.DataArray(np.arange(1, dst_hhl_dim + 1, 1) + 0.5, name=var, dims=infile[var].dims, + attrs=infile[var].attrs) + if var + "_bnd" in infile: + bnds = xarray.DataArray(np.empty((dst_hhl_dim, 2)), name=var + "_bnds", + dims=infile[var + "_bnds"].dims, attrs=infile[var + "_bnds"].attrs) + bnds[dst_hhl_dim, 0] = outfile[var].values - 0.5 + bnds[dst_hhl_dim, 1] = outfile[var].values + 0.5 + outfile[var + "_bnds"] = bnds + elif var.startswith("height") and infile[var].shape[0] == src_fhl_dim: + if len(infile[var].shape) == 2: + continue + logging.info(f" -> replacing old height coordinate '{var}'") + outfile[var] = xarray.DataArray(np.arange(1, dst_fhl_dim + 1, 1) + 0.5, name=var, dims=infile[var].dims, + attrs=infile[var].attrs) + if var + "_bnd" in infile: + bnds = xarray.DataArray(np.empty((dst_fhl_dim, 2)), name=var + "_bnds", + dims=infile[var + "_bnds"].dims, attrs=infile[var + "_bnds"].attrs) + bnds[:, 0] = outfile[var].values - 0.5 + bnds[:, 1] = outfile[var].values + 0.5 + outfile[var + "_bnds"] = bnds + else: + logging.info(f" -> storing {var} without interpolation") + if var in infile.coords: + outfile.coords[var] = infile[var] + else: + outfile[var] = infile[var] + + # store the result + logging.info(f"writing file {output_name}") + outfile.attrs = infile.attrs + outfile.to_netcdf(output_name, engine="scipy") + + +def remap_one_file(in_grid, out_grid, one_file, dst_fodler, rename=None, src_vgrid=None, dst_vgrid=None): + """ + write the remapping namelist and run iconremap + + Parameters + ---------- + in_grid + out_grid + one_file + dst_fodler + """ + # read the file content to get a list of all variables + content = read(one_file) + all_vars = list(content.data_vars) + remap_vars = [] + for var in all_vars: + if not "bnds" in var and not '_vertices' in var and not 'lat' in var and not 'lon' in var: + remap_vars.append(var) + + # make sure that destination folder exists + if not os.path.exists(dst_fodler): + os.makedirs(dst_fodler) + + # is vertical remapping requested? + if src_vgrid is not None and dst_vgrid is not None: + vinp = True + if args.output_format != "nc": + logging.error("vertical regridding is only supported for netcdf output!") + exit(-1) + else: + vinp = False + + # rename the file if requested + if rename is not None: + # read the time stamp + if content["time"].size != 1: + logging.error("more then one timestep, unable to rename the file!") + exit(-1) + if content["time"].attrs["units"] == "day as %Y%m%d.%f": + date_part = int(content["time"][0]) + time_part = float(content["time"][0]) - date_part + year = str(date_part)[0:4] + month = str(date_part)[4:6] + day = str(date_part)[6:8] + hour = "%02d" % round(time_part * 24) + else: + logging.error("unsupported timeformat!") + exit(-1) + # replace ICON-style placeholders: + rename = rename.replace("<y>", year) + rename = rename.replace("<m>", month) + rename = rename.replace("<d>", day) + rename = rename.replace("<h>", hour) + rename = os.path.join(dst_fodler, rename) + else: + rename = os.path.join(dst_fodler, (os.path.basename(one_file))) + + # output grib or netcdf + filename, ext = os.path.splitext(rename) + if args.output_format == "grb": + ext = ".grb" + elif args.output_format == "nc": + ext = ".nc" + if ext in ["grib", "grb", "grib2", "grb2"]: + out_filetype = 2 + else: + out_filetype = 4 + rename = filename + ext + + # create namelist for the input file + namelist = f""" + &remap_nml + in_grid_filename = '{os.path.abspath(in_grid)}' + in_filename = '{os.path.abspath(one_file)}' + in_type = 2 + out_grid_filename = '{os.path.abspath(out_grid)}' + out_filename = '{os.path.abspath(rename)}' + out_type = 2 + out_filetype = {out_filetype} + / + """ + # add all variables + for var in remap_vars: + # skip VN when vertical interpolation is done. it has a different number of points + if vinp and var == "VN": + logging.warning("skipping VN due to requested vertical interpolation. Make sure you have U and V!") + # continue + if "soiltyp" in var.lower() or content[var].dtype in [np.int32, np.int64]: + intp_method = 4 + else: + intp_method = 3 + namelist += f""" + &input_field_nml + inputname = "{var}" + outputname = "{var}" + intp_method = {intp_method} + / + """ + nml_file = os.path.abspath(os.path.join(dst_fodler, (os.path.basename(one_file))) + ".namelist") + with open(nml_file, "w") as nml: + nml.write(namelist + "\n") + + # run the remapping tool + p = run(["iconremap", "-vvv", "--remap_nml", nml_file], cwd=dst_fodler) + if p.returncode != 0: + logging.error(f"remapping of {one_file} failed") + exit(-1) + + # perform vertical regridding using numpy and enstools + if vinp: + # move horizontally remapped file to temporal name + tmpname = filename + ".no-vinp" + ext + vinp_filename = filename + ".vinp" + ext + os.rename(rename, tmpname) + + # perform the actual vertical interpolation + vertical_interpolation(src_vgrid, dst_vgrid, tmpname, vinp_filename) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description=__doc__) + parser.add_argument("--src-grid", required=True, help="source grid file") + parser.add_argument("--src-vgrid", required=False, + help="optional: HHL from the source grid. Used for vertical interpolation.") + parser.add_argument("--dst-grid", required=True, help="destination grid file") + parser.add_argument("--dst-vgrid", required=False, + help="optional: HHL for the destination grid. Used for vertical interpolation.") + parser.add_argument("--source", nargs="+", required=True, help="source data file(s)") + parser.add_argument("--dest", required=True, help="destination folder") + parser.add_argument("--output-format", choices=["input", "nc", "grb"], default="input", + help="select type of output: input=same as input; nc=netcdf, grb=grib") + parser.add_argument("--rename", required=False, + help="change the filename. Example: 'latbc_DOM01_ML_<y>-<m>-<d>T<h>.nc'") + args = parser.parse_args() + + # if a vertical source grid is given, interpolate it at first horizontally onto the destination grid + if args.src_vgrid is not None: + src_vgrid_name, ext = os.path.splitext(os.path.basename(args.src_vgrid)) + if ext != ".grb": + logging.error("--src-vgrid is expected to be a grib file with extension .grb!") + exit(-1) + remap_one_file(args.src_grid, args.dst_grid, args.src_vgrid, args.dest) + src_vgrid_name1 = os.path.join(args.dest, src_vgrid_name + ".nc") + src_vgrid_name2 = os.path.join(args.dest, src_vgrid_name + ".hinp.nc") + os.rename(src_vgrid_name1, src_vgrid_name2) + args.src_vgrid = src_vgrid_name2 + + # loop over all source files + for one_file in args.source: + remap_one_file(args.src_grid, args.dst_grid, one_file, args.dest, args.rename, args.src_vgrid, args.dst_vgrid)