From 6bcab6c87934e6ff920976bd48f4f7aee76ac1f8 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Oriol=20Tint=C3=B3?= <oriol.tinto@lmu.de>
Date: Wed, 28 Jun 2023 09:44:10 +0200
Subject: [PATCH] Remove icon-remap-helper.py

---
 .../event-generator/icon-remap-helper.py      | 282 ------------------
 1 file changed, 282 deletions(-)
 delete mode 100644 templates/event-generator/icon-remap-helper.py

diff --git a/templates/event-generator/icon-remap-helper.py b/templates/event-generator/icon-remap-helper.py
deleted file mode 100644
index 294eefd..0000000
--- a/templates/event-generator/icon-remap-helper.py
+++ /dev/null
@@ -1,282 +0,0 @@
-#!/usr/bin/env python3
-"""
-automatically create namelist files for icon grid to icon grid remapping and run iconremap
-"""
-import argparse
-from enstools.io import read, write
-from enstools.interpolation import nearest_neighbour
-from subprocess import run
-import logging
-import os
-import numpy as np
-import xarray
-
-
-def load_vgrid(grid_file):
-    """
-    read HHL from an input file and calculate also the full level heights
-    """
-    logging.info(f"Reading input file with vertical grid information {grid_file}...")
-    data = read(grid_file)
-    if not "HHL" in data:
-        logging.error(f"HHL not found in {grid_file}")
-        exit(-1)
-
-    # store both result arrays in one dataset without time dimension
-    result = xarray.Dataset()
-    result["HHL"] = data["HHL"][0, ...].compute()
-
-    FHL = xarray.DataArray(np.empty((result["HHL"].shape[0] - 1, result["HHL"].shape[1])), name="FHL",
-                           dims=("generalVertical2", "cell"))
-    for layer in range(FHL.shape[0]):
-        FHL[layer, ...] = (result["HHL"][layer, ...] + result["HHL"][layer + 1, ...]) / 2
-    result["FHL"] = FHL
-    return result
-
-
-def vertical_interpolation_one_variable(src_hl, dst_hl, values):
-    """
-    perform the interpolation using numpy.interp on one variable
-    """
-    # perform the interpolation gridpointwise
-    result = np.empty((values.shape[0], dst_hl.shape[0], values.shape[2]))
-    for time in range(values.shape[0]):
-        for cell in range(values.shape[2]):
-            # all the flipping is neccessary as the function interp expects increasing values
-            result[time, :, cell] = np.flip(np.interp(np.flip(dst_hl[:, cell], 0), np.flip(src_hl[:, cell], 0),
-                                                      np.flip(values.values[time, :, cell], 0)), 0)
-
-    # create the new xarray DataArray
-    new_array = xarray.DataArray(result, dims=values.dims, name=values.name, attrs=values.attrs)
-    return new_array
-
-
-def vertical_interpolation(src_vgrid, dst_vgrid, input_name, output_name):
-    """
-    perform vertical interpolation
-    """
-    logging.info("starting vertical interpolation...")
-    # read source and destination grids
-    src_vgrid_hl = load_vgrid(src_vgrid)
-    dst_vgrid_hl = load_vgrid(dst_vgrid)
-    src_hhl_dim = src_vgrid_hl["HHL"].shape[0]
-    src_fhl_dim = src_vgrid_hl["FHL"].shape[0]
-    dst_hhl_dim = dst_vgrid_hl["HHL"].shape[0]
-    dst_fhl_dim = dst_vgrid_hl["FHL"].shape[0]
-
-    # read input file
-    infile = read(input_name).compute()
-
-    # create output file
-    outfile = xarray.Dataset()
-
-    # loop over all variables of the input file
-    for var in infile.variables:
-        # VN is special, it is defined on the edges of the grid. find nearest hgith coordinates
-        if var == "VN" and infile[var].shape[1] == src_fhl_dim:
-            logging.info(f"    -> interpolating {var} onto FHL")
-            logging.info("        -> interpolating of height array to the edges")
-            fint = nearest_neighbour(infile["clon"], infile["clat"], infile["elon"], infile["elat"],
-                                     src_grid="unstructured", dst_grid="unstructured", npoints=2, method="mean")
-            src_vgrid_fhl_vn = fint(src_vgrid_hl["FHL"])
-            dst_vgrid_fhl_vn = fint(dst_vgrid_hl["FHL"])
-            outfile[var] = vertical_interpolation_one_variable(src_vgrid_fhl_vn.values, dst_vgrid_fhl_vn.values,
-                                                               infile[var])
-        elif not var.startswith("height") and len(infile[var].shape) > 1 and infile[var].shape[1] == src_hhl_dim:
-            logging.info(f"    -> interpolating {var} onto HHL")
-            outfile[var] = vertical_interpolation_one_variable(src_vgrid_hl["HHL"].values, dst_vgrid_hl["HHL"].values,
-                                                               infile[var])
-            continue
-        elif not var.startswith("height") and len(infile[var].shape) > 1 and infile[var].shape[1] == src_fhl_dim:
-            logging.info(f"    -> interpolating {var} onto FHL")
-            outfile[var] = vertical_interpolation_one_variable(src_vgrid_hl["FHL"].values, dst_vgrid_hl["FHL"].values,
-                                                               infile[var])
-            continue
-        else:
-            if var.startswith("height") and infile[var].shape[0] == src_hhl_dim:
-                if len(infile[var].shape) == 2:
-                    continue
-                logging.info(f"    -> replacing old height coordinate '{var}'")
-                outfile[var] = xarray.DataArray(np.arange(1, dst_hhl_dim + 1, 1) + 0.5, name=var, dims=infile[var].dims,
-                                                attrs=infile[var].attrs)
-                if var + "_bnd" in infile:
-                    bnds = xarray.DataArray(np.empty((dst_hhl_dim, 2)), name=var + "_bnds",
-                                            dims=infile[var + "_bnds"].dims, attrs=infile[var + "_bnds"].attrs)
-                    bnds[dst_hhl_dim, 0] = outfile[var].values - 0.5
-                    bnds[dst_hhl_dim, 1] = outfile[var].values + 0.5
-                    outfile[var + "_bnds"] = bnds
-            elif var.startswith("height") and infile[var].shape[0] == src_fhl_dim:
-                if len(infile[var].shape) == 2:
-                    continue
-                logging.info(f"    -> replacing old height coordinate '{var}'")
-                outfile[var] = xarray.DataArray(np.arange(1, dst_fhl_dim + 1, 1) + 0.5, name=var, dims=infile[var].dims,
-                                                attrs=infile[var].attrs)
-                if var + "_bnd" in infile:
-                    bnds = xarray.DataArray(np.empty((dst_fhl_dim, 2)), name=var + "_bnds",
-                                            dims=infile[var + "_bnds"].dims, attrs=infile[var + "_bnds"].attrs)
-                    bnds[:, 0] = outfile[var].values - 0.5
-                    bnds[:, 1] = outfile[var].values + 0.5
-                    outfile[var + "_bnds"] = bnds
-            else:
-                logging.info(f"    -> storing {var} without interpolation")
-                if var in infile.coords:
-                    outfile.coords[var] = infile[var]
-                else:
-                    outfile[var] = infile[var]
-
-    # store the result
-    logging.info(f"writing file {output_name}")
-    outfile.attrs = infile.attrs
-    outfile.to_netcdf(output_name, engine="scipy")
-
-
-def remap_one_file(in_grid, out_grid, one_file, dst_fodler, rename=None, src_vgrid=None, dst_vgrid=None):
-    """
-    write the remapping namelist and run iconremap
-
-    Parameters
-    ----------
-    in_grid
-    out_grid
-    one_file
-    dst_fodler
-    """
-    # read the file content to get a list of all variables
-    content = read(one_file)
-    all_vars = list(content.data_vars)
-    remap_vars = []
-    for var in all_vars:
-        if not "bnds" in var and not '_vertices' in var and not 'lat' in var and not 'lon' in var:
-            remap_vars.append(var)
-
-    # make sure that destination folder exists
-    if not os.path.exists(dst_fodler):
-        os.makedirs(dst_fodler)
-
-    # is vertical remapping requested?
-    if src_vgrid is not None and dst_vgrid is not None:
-        vinp = True
-        if args.output_format != "nc":
-            logging.error("vertical regridding is only supported for netcdf output!")
-            exit(-1)
-    else:
-        vinp = False
-
-    # rename the file if requested
-    if rename is not None:
-        # read the time stamp
-        # if content["time"].size != 1:
-        #     logging.error("more then one timestep, unable to rename the file!")
-        #     exit(-1)
-        # if content["time"].attrs["units"] == "day as %Y%m%d.%f":
-        #     date_part = int(content["time"][0])
-        #     time_part = float(content["time"][0]) - date_part
-        #     year = str(date_part)[0:4]
-        #     month = str(date_part)[4:6]
-        #     day = str(date_part)[6:8]
-        #     hour = "%02d" % round(time_part * 24)
-        # else:
-        #     logging.error("unsupported timeformat!")
-        #     exit(-1)
-        # # replace ICON-style placeholders:
-        # rename = rename.replace("<y>", year)
-        # rename = rename.replace("<m>", month)
-        # rename = rename.replace("<d>", day)
-        # rename = rename.replace("<h>", hour)
-        rename = os.path.join(dst_fodler, rename)
-    else:
-        rename = os.path.join(dst_fodler, (os.path.basename(one_file)))
-
-    # output grib or netcdf
-    filename, ext = os.path.splitext(rename)
-    if args.output_format == "grb":
-        ext = ".grb"
-    elif args.output_format == "nc":
-        ext = ".nc"
-    if ext in ["grib", "grb", "grib2", "grb2"]:
-        out_filetype = 2
-    else:
-        out_filetype = 4
-    rename = filename + ext
-
-    # create namelist for the input file
-    namelist = f"""
-    &remap_nml
-        in_grid_filename   = '{os.path.abspath(in_grid)}'
-        in_filename        = '{os.path.abspath(one_file)}'
-        in_type            = 2
-        out_grid_filename  = '{os.path.abspath(out_grid)}'
-        out_filename       = '{os.path.abspath(rename)}'
-        out_type           = 2
-        out_filetype       = {out_filetype}
-    /
-    """
-    # add all variables
-    for var in remap_vars:
-        # skip VN when vertical interpolation is done. it has a different number of points
-        if vinp and var == "VN":
-            logging.warning("skipping VN due to requested vertical interpolation. Make sure you have U and V!")
-            # continue
-        if "soiltyp" in var.lower() or content[var].dtype in [np.int32, np.int64]:
-            intp_method = 4
-        else:
-            intp_method = 3
-        namelist += f"""
-        &input_field_nml
-            inputname      = "{var}"
-            outputname     = "{var}"
-            intp_method    = {intp_method}
-        /
-        """
-    nml_file = os.path.abspath(os.path.join(dst_fodler, (os.path.basename(one_file))) + ".namelist")
-    with open(nml_file, "w") as nml:
-        nml.write(namelist + "\n")
-
-    # run the remapping tool
-    p = run(["iconremap", "-vvv", "--remap_nml", nml_file], cwd=dst_fodler)
-    if p.returncode != 0:
-        logging.error(f"remapping of {one_file} failed")
-        exit(-1)
-
-    # perform vertical regridding using numpy and enstools
-    if vinp:
-        # move horizontally remapped file to temporal name
-        tmpname = filename + ".no-vinp" + ext
-        vinp_filename = filename + ".vinp" + ext
-        os.rename(rename, tmpname)
-
-        # perform the actual vertical interpolation
-        vertical_interpolation(src_vgrid, dst_vgrid, tmpname, vinp_filename)
-
-
-if __name__ == "__main__":
-    parser = argparse.ArgumentParser(description=__doc__)
-    parser.add_argument("--src-grid", required=True, help="source grid file")
-    parser.add_argument("--src-vgrid", required=False,
-                        help="optional: HHL from the source grid. Used for vertical interpolation.")
-    parser.add_argument("--dst-grid", required=True, help="destination grid file")
-    parser.add_argument("--dst-vgrid", required=False,
-                        help="optional: HHL for the destination grid. Used for vertical interpolation.")
-    parser.add_argument("--source", nargs="+", required=True, help="source data file(s)")
-    parser.add_argument("--dest", required=True, help="destination folder")
-    parser.add_argument("--output-format", choices=["input", "nc", "grb"], default="input",
-                        help="select type of output: input=same as input; nc=netcdf, grb=grib")
-    parser.add_argument("--rename", required=False,
-                        help="change the filename. Example: 'latbc_DOM01_ML_<y>-<m>-<d>T<h>.nc'")
-    args = parser.parse_args()
-
-    # if a vertical source grid is given, interpolate it at first horizontally onto the destination grid
-    if args.src_vgrid is not None:
-        src_vgrid_name, ext = os.path.splitext(os.path.basename(args.src_vgrid))
-        if ext != ".grb":
-            logging.error("--src-vgrid is expected to be a grib file with extension .grb!")
-            exit(-1)
-        remap_one_file(args.src_grid, args.dst_grid, args.src_vgrid, args.dest)
-        src_vgrid_name1 = os.path.join(args.dest, src_vgrid_name + ".nc")
-        src_vgrid_name2 = os.path.join(args.dest, src_vgrid_name + ".hinp.nc")
-        os.rename(src_vgrid_name1, src_vgrid_name2)
-        args.src_vgrid = src_vgrid_name2
-
-    # loop over all source files
-    for one_file in args.source:
-        remap_one_file(args.src_grid, args.dst_grid, one_file, args.dest, args.rename, args.src_vgrid, args.dst_vgrid)
-- 
GitLab