#!/usr/bin/env python from sys import version_info if version_info[0] > 2: raw_input = input import os import json import yaml import pickle import importlib import csv import logging logger = logging.getLogger("KerasROOTClassification") logger.addHandler(logging.NullHandler()) from root_numpy import tree2array, rec2array, array2root import numpy as np import pandas as pd import h5py from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.externals import joblib from sklearn.metrics import roc_curve, auc from keras.models import Sequential from keras.layers import Dense, Dropout from keras.models import model_from_json from keras.callbacks import History, EarlyStopping, CSVLogger from keras.optimizers import SGD import keras.optimizers import matplotlib.pyplot as plt # configure number of cores # this doesn't seem to work, but at least with these settings keras only uses 4 processes import tensorflow as tf from keras import backend as K num_cores = 1 config = tf.ConfigProto(intra_op_parallelism_threads=num_cores, inter_op_parallelism_threads=num_cores, allow_soft_placement=True, device_count = {'CPU': num_cores}) session = tf.Session(config=config) K.set_session(session) import ROOT class ClassificationProject(object): """Simple framework to load data from ROOT TTrees and train Keras neural networks for classification according to some global settings. See the `Keras documentation <https://keras.io>` for further information All needed data that is created is stored in a project dir and can be used again later without the need to be recreated. :param name: Name of the project - this will also be the name of the project directory in the output dir. If no further arguments are given, this argument is interpreted as a directory name, from which a previously created project should be initialised :param signal_trees: list of tuples (filename, treename) for the data that should be used as signal :param bkg_trees: list of tuples (filename, treename) for the data that should be used as background :param branches: list of branch names or expressions to be used as input values for training :param weight_expr: expression to weight the events in the loss function :param identifiers: list of branches or expressions that uniquely identify events. This is used to store the list of training events, such that they can be marked later on, for example when creating friend trees with output score :param selection: selection expression that events have to fulfill to be considered for training :param layers: number of layers in the neural network :param nodes: number of nodes in each layer :param dropout: dropout fraction after each hidden layer. Set to None for no Dropout :param batch_size: size of the training batches :param validation_split: split off this fraction of training events for loss evaluation :param activation_function: activation function in the hidden layers :param activation_function_output: activation function in the output layer :param out_dir: base directory in which the project directories should be stored :param scaler_type: sklearn scaler class name to transform the data before training (options: "StandardScaler", "RobustScaler") :param step_signal: step size when selecting signal training events (e.g. 2 means take every second event) :param step_bkg: step size when selecting background training events (e.g. 2 means take every second event) :param optimizer: name of optimizer class in keras.optimizers :param optimizer_opts: dictionary of options for the optimizer :param use_earlystopping: set true to use the keras EarlyStopping callback :param earlystopping_opts: options for the keras EarlyStopping callback :param random_seed: use this seed value when initialising the model and produce consistent results. Note: random data is also used for shuffling the training data, so results may vary still. To produce consistent results, set the numpy random seed before training. """ # Datasets that are stored to (and dynamically loaded from) hdf5 dataset_names = ["x_train", "x_test", "y_train", "y_test", "w_train", "w_test", "scores_train", "scores_test"] # Datasets that are retrieved from ROOT trees the first time dataset_names_tree = ["x_train", "x_test", "y_train", "y_test", "w_train", "w_test"] def __init__(self, name, *args, **kwargs): if len(args) < 1 and len(kwargs) < 1: # if no further arguments given, interpret as directory name self._init_from_dir(name) else: # otherwise initialise new project self._init_from_args(name, *args, **kwargs) with open(os.path.join(self.project_dir, "options.json"), "w") as of: json.dump(dict(args=args, kwargs=kwargs), of) def _init_from_dir(self, dirname): with open(os.path.join(dirname, "options.json")) as f: options = yaml.safe_load(f) options["kwargs"]["project_dir"] = dirname self._init_from_args(os.path.basename(dirname), *options["args"], **options["kwargs"]) def _init_from_args(self, name, signal_trees, bkg_trees, branches, weight_expr, identifiers, selection=None, layers=3, nodes=64, dropout=None, batch_size=128, validation_split=0.33, activation_function='relu', activation_function_output='sigmoid', project_dir=None, scaler_type="RobustScaler", step_signal=2, step_bkg=2, optimizer="SGD", optimizer_opts=None, use_earlystopping=True, earlystopping_opts=None, random_seed=1234): self.name = name self.signal_trees = signal_trees self.bkg_trees = bkg_trees self.branches = branches self.weight_expr = weight_expr self.selection = selection self.identifiers = identifiers self.layers = layers self.nodes = nodes self.dropout = dropout self.batch_size = batch_size self.validation_split = validation_split self.activation_function = activation_function self.activation_function_output = activation_function_output self.scaler_type = scaler_type self.step_signal = step_signal self.step_bkg = step_bkg self.optimizer = optimizer self.use_earlystopping = use_earlystopping if optimizer_opts is None: optimizer_opts = dict() self.optimizer_opts = optimizer_opts if earlystopping_opts is None: earlystopping_opts = dict() self.earlystopping_opts = earlystopping_opts self.project_dir = project_dir if self.project_dir is None: self.project_dir = name if not os.path.exists(self.project_dir): os.mkdir(self.project_dir) self.random_seed = random_seed self.s_train = None self.b_train = None self.s_test = None self.b_test = None self._x_train = None self._x_test = None self._y_train = None self._y_test = None self._w_train = None self._w_test = None self._scores_train = None self._scores_test = None self._s_eventlist_train = None self._b_eventlist_train = None self._scaler = None self._class_weight = None self._model = None self._history = None self._callbacks_list = [] # track the number of epochs this model has been trained self.total_epochs = 0 self.data_loaded = False self.data_transformed = False def _load_data(self): try: # if those don't exist, we need to load them from ROOT trees first self._load_from_hdf5(*self.dataset_names_tree) except KeyError: logger.info("Couldn't load all datasets - reading from ROOT trees") # Read signal and background trees into structured numpy arrays signal_chain = ROOT.TChain() bkg_chain = ROOT.TChain() for filename, treename in self.signal_trees: signal_chain.AddFile(filename, -1, treename) for filename, treename in self.bkg_trees: bkg_chain.AddFile(filename, -1, treename) self.s_train = tree2array(signal_chain, branches=self.branches+[self.weight_expr]+self.identifiers, selection=self.selection, start=0, step=self.step_signal) self.b_train = tree2array(bkg_chain, branches=self.branches+[self.weight_expr]+self.identifiers, selection=self.selection, start=0, step=self.step_bkg) self.s_test = tree2array(signal_chain, branches=self.branches+[self.weight_expr], selection=self.selection, start=1, step=self.step_signal) self.b_test = tree2array(bkg_chain, branches=self.branches+[self.weight_expr], selection=self.selection, start=1, step=self.step_bkg) self.s_eventlist_train = self.s_train[self.identifiers] self.b_eventlist_train = self.b_train[self.identifiers] self._dump_training_list() # now we don't need the identifiers anymore self.s_train = self.s_train[self.branches+[self.weight_expr]] self.b_train = self.b_train[self.branches+[self.weight_expr]] # create x (input), y (target) and w (weights) arrays # the first block will be signals, the second block backgrounds self.x_train = rec2array(self.s_train[self.branches]) self.x_train = np.concatenate((self.x_train, rec2array(self.b_train[self.branches]))) self.x_test = rec2array(self.s_test[self.branches]) self.x_test = np.concatenate((self.x_test, rec2array(self.b_test[self.branches]))) self.w_train = self.s_train[self.weight_expr] self.w_train = np.concatenate((self.w_train, self.b_train[self.weight_expr])) self.w_test = self.s_test[self.weight_expr] self.w_test = np.concatenate((self.w_test, self.b_test[self.weight_expr])) self.y_train = np.empty(len(self.x_train)) self.y_train[:len(self.s_train)] = 1 self.y_train[len(self.s_train):] = 0 self.y_test = np.empty(len(self.x_test)) self.y_test[:len(self.s_test)] = 1 self.y_test[len(self.s_test):] = 0 self._dump_to_hdf5(*self.dataset_names_tree) self.data_loaded = True def _dump_training_list(self): s_eventlist_df = pd.DataFrame(self.s_eventlist_train) b_eventlist_df = pd.DataFrame(self.b_eventlist_train) s_eventlist_df.to_csv(os.path.join(self.project_dir, "s_eventlist_train.csv")) b_eventlist_df.to_csv(os.path.join(self.project_dir, "b_eventlist_train.csv")) @property def s_eventlist_train(self): if self._s_eventlist_train is None: df = pd.read_csv(os.path.join(self.project_dir, "s_eventlist_train.csv")) self._s_eventlist_train = df.to_records()[self.identifiers] return self._s_eventlist_train @s_eventlist_train.setter def s_eventlist_train(self, value): self._s_eventlist_train = value @property def b_eventlist_train(self): if self._b_eventlist_train is None: df = pd.read_csv(os.path.join(self.project_dir, "b_eventlist_train.csv")) self._b_eventlist_train = df.to_records()[self.identifiers] return self._b_eventlist_train @b_eventlist_train.setter def b_eventlist_train(self, value): self._b_eventlist_train = value def _dump_to_hdf5(self, *dataset_names): if len(dataset_names) < 1: dataset_names = self.dataset_names for dataset_name in dataset_names: filename = os.path.join(self.project_dir, dataset_name+".h5") logger.info("Writing {} to {}".format(dataset_name, filename)) with h5py.File(filename, "w") as hf: hf.create_dataset(dataset_name, data=getattr(self, dataset_name)) def _load_from_hdf5(self, *dataset_names): if len(dataset_names) < 1: dataset_names = self.dataset_names for dataset_name in dataset_names: filename = os.path.join(self.project_dir, dataset_name+".h5") logger.info("Trying to load {} from {}".format(dataset_name, filename)) with h5py.File(filename) as hf: setattr(self, dataset_name, hf[dataset_name][:]) logger.info("Data loaded") @property def callbacks_list(self): self._callbacks_list = [] self._callbacks_list.append(self.history) if self.use_earlystopping: self._callbacks_list.append(EarlyStopping(**self.earlystopping_opts)) self._callbacks_list.append(CSVLogger(os.path.join(self.project_dir, "training.log"), append=True)) return self._callbacks_list @property def scaler(self): # create the scaler (and fit to training data) if not existent if self._scaler is None: filename = os.path.join(self.project_dir, "scaler.pkl") try: self._scaler = joblib.load(filename) logger.info("Loaded existing scaler from {}".format(filename)) except IOError: logger.info("Creating new {}".format(self.scaler_type)) if self.scaler_type == "StandardScaler": self._scaler = StandardScaler() elif self.scaler_type == "RobustScaler": self._scaler = RobustScaler() else: raise ValueError("Scaler type {} unknown".format(self.scaler_type)) logger.info("Fitting {} to training data".format(self.scaler_type)) self._scaler.fit(self.x_train) # i think this would refit to test data (and overwrite the parameters) # probably we either want to fit only training data or training and test data together # logger.info("Fitting StandardScaler to test data") # self._scaler.fit(self.x_test) joblib.dump(self._scaler, filename) return self._scaler @property def history(self): params_file = os.path.join(self.project_dir, "history_params.json") history_file = os.path.join(self.project_dir, "history_history.json") if self._history is None: self._history = History() if os.path.exists(params_file) and os.path.exists(history_file): with open(params_file) as f: self._history.params = json.load(f) with open(history_file) as f: self._history.history = json.load(f) return self._history @history.setter def history(self, value): self._history = value def _dump_history(self): params_file = os.path.join(self.project_dir, "history_params.json") history_file = os.path.join(self.project_dir, "history_history.json") with open(params_file, "w") as of: json.dump(self.history.params, of) with open(history_file, "w") as of: json.dump(self.history.history, of) def _transform_data(self): if not self.data_transformed: # todo: what to do about the outliers? Where do they come from? logger.debug("training data before transformation: {}".format(self.x_train)) logger.debug("minimum values: {}".format([np.min(self.x_train[:,i]) for i in range(self.x_train.shape[1])])) logger.debug("maximum values: {}".format([np.max(self.x_train[:,i]) for i in range(self.x_train.shape[1])])) self.x_train = self.scaler.transform(self.x_train) logger.debug("training data after transformation: {}".format(self.x_train)) self.x_test = self.scaler.transform(self.x_test) self.data_transformed = True logger.info("Training and test data transformed") def _read_info(self, key, default): filename = os.path.join(self.project_dir, "info.json") if not os.path.exists(filename): with open(filename, "w") as of: json.dump({}, of) with open(filename) as f: info = json.load(f) return info.get(key, default) def _write_info(self, key, value): filename = os.path.join(self.project_dir, "info.json") with open(filename) as f: info = json.load(f) info[key] = value with open(filename, "w") as of: json.dump(info, of) @staticmethod def query_yn(text): result = None while result is None: input_text = raw_input(text) if len(input_text) > 0: if input_text.upper()[0] == "Y": result = True elif input_text.upper()[0] == "N": result = False return result @property def model(self): "Simple MLP" if self._model is None: self._model = Sequential() # first hidden layer self._model.add(Dense(self.nodes, input_dim=len(self.branches), activation=self.activation_function)) # the other hidden layers for layer_number in range(self.layers-1): self._model.add(Dense(self.nodes, activation=self.activation_function)) if self.dropout is not None: self._model.add(Dropout(rate=self.dropout)) # last layer is one neuron (binary classification) self._model.add(Dense(1, activation=self.activation_function_output)) logger.info("Using {}(**{}) as Optimizer".format(self.optimizer, self.optimizer_opts)) Optimizer = getattr(keras.optimizers, self.optimizer) optimizer = Optimizer(**self.optimizer_opts) logger.info("Compile model") rn_state = np.random.get_state() np.random.seed(self.random_seed) self._model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy']) np.random.set_state(rn_state) if os.path.exists(os.path.join(self.project_dir, "weights.h5")): continue_training = self.query_yn("Found previously trained weights - continue training? (Y/N) ") if continue_training: self.model.load_weights(os.path.join(self.project_dir, "weights.h5")) logger.info("Found and loaded previously trained weights") else: logger.info("Starting completely new model") else: logger.info("No weights found, starting completely new model") # dump to json for documentation with open(os.path.join(self.project_dir, "model.json"), "w") as of: of.write(self._model.to_json()) return self._model @property def class_weight(self): if self._class_weight is None: sumw_bkg = np.sum(self.w_train[self.y_train == 0]) sumw_sig = np.sum(self.w_train[self.y_train == 1]) self._class_weight = [(sumw_sig+sumw_bkg)/(2*sumw_bkg), (sumw_sig+sumw_bkg)/(2*sumw_sig)] logger.debug("Calculated class_weight: {}".format(self._class_weight)) return self._class_weight def load(self, reload=False): "Load all data needed for plotting and training" if reload: self.data_loaded = False self.data_transformed = False if not self.data_loaded: self._load_data() if not self.data_transformed: self._transform_data() def shuffle_training_data(self): rn_state = np.random.get_state() np.random.shuffle(self.x_train) np.random.set_state(rn_state) np.random.shuffle(self.y_train) np.random.set_state(rn_state) np.random.shuffle(self.w_train) if self._scores_train is not None: logger.info("Shuffling scores, since they are also there") np.random.set_state(rn_state) np.random.shuffle(self._scores_train) def train(self, epochs=10): self.load() for branch_index, branch in enumerate(self.branches): self.plot_input(branch_index) self.total_epochs = self._read_info("epochs", 0) logger.info("Train model") try: self.shuffle_training_data() self.model.fit(self.x_train, # the reshape might be unnescessary here self.y_train.reshape(-1, 1), epochs=epochs, validation_split = self.validation_split, class_weight=self.class_weight, sample_weight=self.w_train, shuffle=True, batch_size=self.batch_size, callbacks=self.callbacks_list) except KeyboardInterrupt: logger.info("Interrupt training - continue with rest") logger.info("Save history") self._dump_history() logger.info("Save weights") self.model.save_weights(os.path.join(self.project_dir, "weights.h5")) self.total_epochs += epochs self._write_info("epochs", self.total_epochs) logger.info("Reloading (and re-transforming) unshuffled training data") self.load(reload=True) logger.info("Create/Update scores for ROC curve") self.scores_test = self.model.predict(self.x_test) self.scores_train = self.model.predict(self.x_train) self._dump_to_hdf5("scores_train", "scores_test") logger.info("Creating all validation plots") self.plot_all() def evaluate(self, x_eval): logger.debug("Evaluate score for {}".format(x_eval)) x_eval = self.scaler.transform(x_eval) logger.debug("Evaluate for transformed array: {}".format(x_eval)) return self.model.predict(x_eval) def write_friend_tree(self, score_name, source_filename, source_treename, target_filename, target_treename, batch_size=100000): f = ROOT.TFile.Open(source_filename) tree = f.Get(source_treename) entries = tree.GetEntries() if os.path.exists(target_filename): raise IOError("{} already exists, if you want to recreate it, delete it first".format(target_filename)) for start in range(0, entries, batch_size): logger.info("Evaluating score for entry {}/{}".format(start, entries)) logger.debug("Loading next batch") x_from_tree = tree2array(tree, branches=self.branches+self.identifiers, start=start, stop=start+batch_size) x_eval = rec2array(x_from_tree[self.branches]) # create list of booleans that indicate which events where used for training df_identifiers = pd.DataFrame(x_from_tree[self.identifiers]) total_train_list = self.s_eventlist_train total_train_list = np.concatenate((total_train_list, self.b_eventlist_train)) merged = df_identifiers.merge(pd.DataFrame(total_train_list), on=tuple(self.identifiers), indicator=True, how="left") is_train = np.array(merged["_merge"] == "both") # join scores and is_train array scores = self.evaluate(x_eval).reshape(-1) friend_df = pd.DataFrame(np.array(scores, dtype=[(score_name, np.float64)])) friend_df[score_name+"_is_train"] = is_train friend_tree = friend_df.to_records()[[score_name, score_name+"_is_train"]] if start == 0: mode = "recreate" else: mode = "update" logger.debug("Write to root file") array2root(friend_tree, target_filename, treename=target_treename, mode=mode) logger.debug("Done") def write_all_friend_trees(self): pass @staticmethod def get_bin_centered_hist(x, scale_factor=None, **np_kwargs): hist, bins = np.histogram(x, **np_kwargs) centers = (bins[:-1] + bins[1:]) / 2 if scale_factor is not None: hist *= scale_factor return centers, hist def plot_input(self, var_index): "plot a single input variable" branch = self.branches[var_index] fig, ax = plt.subplots() bkg = self.x_train[:,var_index][self.y_train == 0] sig = self.x_train[:,var_index][self.y_train == 1] bkg_weights = self.w_train[self.y_train == 0] sig_weights = self.w_train[self.y_train == 1] logger.debug("Plotting bkg (min={}, max={}) from {}".format(np.min(bkg), np.max(bkg), bkg)) logger.debug("Plotting sig (min={}, max={}) from {}".format(np.min(sig), np.max(sig), sig)) # calculate percentiles to get a heuristic for the range to be plotted # (should in principle also be done with weights, but for now do it unweighted) range_sig = np.percentile(sig, [1, 99]) range_bkg = np.percentile(sig, [1, 99]) plot_range = (min(range_sig[0], range_bkg[0]), max(range_sig[1], range_sig[1])) logger.debug("Calculated range based on percentiles: {}".format(plot_range)) try: centers_sig, hist_sig = self.get_bin_centered_hist(sig, scale_factor=self.class_weight[1], bins=50, range=plot_range, weights=sig_weights) centers_bkg, hist_bkg = self.get_bin_centered_hist(bkg, scale_factor=self.class_weight[0], bins=50, range=plot_range, weights=bkg_weights) except ValueError: # weird, probably not always working workaround for a numpy bug plot_range = (float("{:.2f}".format(plot_range[0])), float("{:.2f}".format(plot_range[1]))) logger.warn("Got a value error during plotting, maybe this is due to a numpy bug - changing range to {}".format(plot_range)) centers_sig, hist_sig = self.get_bin_centered_hist(sig, scale_factor=self.class_weight[1], bins=50, range=plot_range, weights=sig_weights) centers_bkg, hist_bkg = self.get_bin_centered_hist(bkg, scale_factor=self.class_weight[0], bins=50, range=plot_range, weights=bkg_weights) width = centers_sig[1]-centers_sig[0] ax.bar(centers_bkg, hist_bkg, color="b", alpha=0.5, width=width) ax.bar(centers_sig, hist_sig, color="r", alpha=0.5, width=width) ax.set_xlabel(branch+" (transformed)") plot_dir = os.path.join(self.project_dir, "plots") if not os.path.exists(plot_dir): os.mkdir(plot_dir) fig.savefig(os.path.join(plot_dir, "var_{}.pdf".format(var_index))) plt.clf() def plot_weights(self): fig, ax = plt.subplots() bkg = self.w_train[self.y_train == 0] sig = self.w_train[self.y_train == 1] ax.hist(bkg, bins=100, color="b", alpha=0.5) fig.savefig(os.path.join(self.project_dir, "eventweights_bkg.pdf")) fig, ax = plt.subplots() ax.hist(sig, bins=100, color="r", alpha=0.5) fig.savefig(os.path.join(self.project_dir, "eventweights_sig.pdf")) def plot_ROC(self): logger.info("Plot ROC curve") fpr, tpr, threshold = roc_curve(self.y_test, self.scores_test, sample_weight = self.w_test) fpr = 1.0 - fpr roc_auc = auc(tpr, fpr) plt.grid(color='gray', linestyle='--', linewidth=1) plt.plot(tpr, fpr, label=str(self.name + " (AUC = {})".format(roc_auc))) plt.plot([0,1],[1,0], linestyle='--', color='black', label='Luck') plt.ylabel("Background rejection") plt.xlabel("Signal efficiency") plt.title('Receiver operating characteristic') plt.xlim(0,1) plt.ylim(0,1) plt.xticks(np.arange(0,1,0.1)) plt.yticks(np.arange(0,1,0.1)) plt.legend(loc='lower left', framealpha=1.0) plt.savefig(os.path.join(self.project_dir, "ROC.pdf")) plt.clf() def plot_score(self): plot_opts = dict(bins=50, range=(0, 1)) centers_sig_train, hist_sig_train = self.get_bin_centered_hist(self.scores_train[self.y_train==1].reshape(-1), density=True, weights=self.w_train[self.y_train==1], **plot_opts) centers_bkg_train, hist_bkg_train = self.get_bin_centered_hist(self.scores_train[self.y_train==0].reshape(-1), density=True, weights=self.w_train[self.y_train==0], **plot_opts) centers_sig_test, hist_sig_test = self.get_bin_centered_hist(self.scores_test[self.y_test==1].reshape(-1), density=True, weights=self.w_test[self.y_test==1], **plot_opts) centers_bkg_test, hist_bkg_test = self.get_bin_centered_hist(self.scores_test[self.y_test==0].reshape(-1), density=True, weights=self.w_test[self.y_test==0], **plot_opts) fig, ax = plt.subplots() width = centers_sig_train[1]-centers_sig_train[0] ax.bar(centers_bkg_train, hist_bkg_train, color="b", alpha=0.5, width=width, label="background train") ax.bar(centers_sig_train, hist_sig_train, color="r", alpha=0.5, width=width, label="signal train") ax.scatter(centers_bkg_test, hist_bkg_test, color="b", label="background test") ax.scatter(centers_sig_test, hist_sig_test, color="r", label="signal test") ax.set_yscale("log") ax.set_xlabel("NN output") plt.legend(loc='upper right', framealpha=1.0) fig.savefig(os.path.join(self.project_dir, "scores.pdf")) @property def csv_hist(self): with open(os.path.join(self.project_dir, "training.log")) as f: reader = csv.reader(f) history_list = list(reader) hist_dict = {} for hist_key_index, hist_key in enumerate(history_list[0]): hist_dict[hist_key] = [float(line[hist_key_index]) for line in history_list[1:]] return hist_dict def plot_loss(self, all_trainings=False): """ Plot the value of the loss function for each epoch :param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used) """ if all_trainings: hist_dict = self.csv_hist else: hist_dict = self.history.history logger.info("Plot losses") plt.plot(hist_dict['loss']) plt.plot(hist_dict['val_loss']) plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train','test'], loc='upper left') plt.savefig(os.path.join(self.project_dir, "losses.pdf")) plt.clf() def plot_accuracy(self, all_trainings=False): """ Plot the value of the accuracy metric for each epoch :param all_trainings: set to true if you want to plot all trainings (otherwise the previous history is used) """ if all_trainings: hist_dict = self.csv_hist else: hist_dict = self.history.history logger.info("Plot accuracy") plt.plot(hist_dict['acc']) plt.plot(hist_dict['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.savefig(os.path.join(self.project_dir, "accuracy.pdf")) plt.clf() def plot_all(self): self.plot_ROC() self.plot_accuracy() self.plot_loss() self.plot_score() self.plot_weights() def create_getter(dataset_name): def getx(self): if getattr(self, "_"+dataset_name) is None: self._load_from_hdf5(dataset_name) return getattr(self, "_"+dataset_name) return getx def create_setter(dataset_name): def setx(self, value): setattr(self, "_"+dataset_name, value) return setx # define getters and setters for all datasets for dataset_name in ClassificationProject.dataset_names: setattr(ClassificationProject, dataset_name, property(create_getter(dataset_name), create_setter(dataset_name))) if __name__ == "__main__": logging.basicConfig() logging.getLogger("KerasROOTClassification").setLevel(logging.INFO) #logging.getLogger("KerasROOTClassification").setLevel(logging.DEBUG) filename = "/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root" c = ClassificationProject("test4", signal_trees = [(filename, "GG_oneStep_1705_1105_505_NoSys")], bkg_trees = [(filename, "ttbar_NoSys"), (filename, "wjets_Sherpa221_NoSys") ], optimizer="Adam", #optimizer="SGD", #optimizer_opts=dict(lr=100., decay=1e-6, momentum=0.9), earlystopping_opts=dict(monitor='val_loss', min_delta=0, patience=2, verbose=0, mode='auto'), selection="lep1Pt<5000", # cut out a few very weird outliers branches = ["met", "mt"], weight_expr = "eventWeight*genWeight", identifiers = ["DatasetNumber", "EventNumber"], step_bkg = 100) np.random.seed(42) c.train(epochs=20) #c.plot_all() # c.write_friend_tree("test4_score", # source_filename=filename, source_treename="GG_oneStep_1705_1105_505_NoSys", # target_filename="friend.root", target_treename="test4_score") # c.write_friend_tree("test4_score", # source_filename=filename, source_treename="ttbar_NoSys", # target_filename="friend_ttbar_NoSys.root", target_treename="test4_score")