"Helper functions using keras or tensorflow" import logging import numpy as np import keras.backend as K from sklearn.preprocessing import RobustScaler from sklearn.preprocessing.data import _handle_zeros_in_scale from meme import cache logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) def get_single_neuron_function(model, layer, neuron, scaler=None): f = K.function([model.input]+[K.learning_phase()], [model.layers[layer].output[:,neuron]]) def eval_single_neuron(x): if scaler is not None: x_eval = scaler.transform(x) else: x_eval = x return f([x_eval])[0] return eval_single_neuron def create_random_event(ranges): random_event = np.array([p[0]+(p[1]-p[0])*np.random.rand() for p in ranges]) random_event = random_event.reshape(-1, len(random_event)) return random_event def max_activation_wrt_input(gradient_function, random_event, threshold=None, maxthreshold=None, maxit=100, step=1, const_indices=[]): for i in range(maxit): loss_value, grads_value = gradient_function([random_event]) for const_index in const_indices: grads_value[0][const_index] = 0 if threshold is not None: if loss_value > threshold and (maxthreshold is None or loss_value < maxthreshold): # found an event within the thresholds return loss_value, random_event elif (maxthreshold is not None and loss_value > maxthreshold): random_event -= grads_value*step else: random_event += grads_value*step else: random_event += grads_value*step else: if threshold is not None: # no event found return None # if no threshold requested, always return last status return loss_value, random_event def get_grad_function(model, layer, neuron): loss = model.layers[layer].output[:,neuron] grads = K.gradients(loss, model.input)[0] # trick from https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5) return K.function([model.input], [loss, grads]) @cache(useJSON=True, argHashFunctions=[ lambda model: [hash(i.tostring()) for i in model.get_weights()], lambda ranges: [hash(i.tostring()) for i in ranges], ], ) def get_max_activation_events(model, ranges, ntries, layer, neuron, seed=42, **kwargs): gradient_function = get_grad_function(model, layer, neuron) events = None losses = None np.random.seed(seed) for i in range(ntries): if not (i%100): logger.info(i) res = max_activation_wrt_input(gradient_function, create_random_event(ranges), **kwargs) if res is not None: loss, event = res else: continue if events is None: events = event losses = loss else: events = np.concatenate([events, event]) losses = np.concatenate([losses, loss]) return losses, events "from https://stackoverflow.com/questions/21844024/weighted-percentile-using-numpy#29677616" def weighted_quantile(values, quantiles, sample_weight=None, values_sorted=False, old_style=False): """ Very close to np.percentile, but supports weights. NOTE: quantiles should be in [0, 1]! :param values: np.array with data :param quantiles: array-like with many quantiles needed :param sample_weight: array-like of the same length as `array` :param values_sorted: bool, if True, then will avoid sorting of initial array :param old_style: if True, will correct output to be consistent with np.percentile. :return: np.array with computed quantiles. """ values = np.array(values) quantiles = np.array(quantiles) if sample_weight is None: sample_weight = np.ones(len(values)) sample_weight = np.array(sample_weight) assert np.all(quantiles >= 0) and np.all(quantiles <= 1), 'quantiles should be in [0, 1]' if not values_sorted: sorter = np.argsort(values) values = values[sorter] sample_weight = sample_weight[sorter] weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight if old_style: # To be convenient with np.percentile weighted_quantiles -= weighted_quantiles[0] weighted_quantiles /= weighted_quantiles[-1] else: weighted_quantiles /= np.sum(sample_weight) return np.interp(quantiles, weighted_quantiles, values) class WeightedRobustScaler(RobustScaler): def fit(self, X, y=None, weights=None): RobustScaler.fit(self, X, y) if weights is None: return self else: wqs = np.array([weighted_quantile(X[:,i], [0.25, 0.5, 0.75], sample_weight=weights) for i in range(X.shape[1])]) self.center_ = wqs[:,1] self.scale_ = wqs[:,2]-wqs[:,0] self.scale_ = _handle_zeros_in_scale(self.scale_, copy=False) return self