diff --git a/toolkit.py b/toolkit.py index c6a2a917fae4e471b18ae21feb8ad362f0e98d05..6f2437876daf24ef80489dd2065c4a380336426e 100755 --- a/toolkit.py +++ b/toolkit.py @@ -108,7 +108,7 @@ class ClassificationProject(object): :param layers: number of layers in the neural network - :param nodes: number of nodes in each layer + :param nodes: list number of nodes in each layer. If only a single number is given, use this number for every layer :param dropout: dropout fraction after each hidden layer. Set to None for no Dropout @@ -236,6 +236,12 @@ class ClassificationProject(object): self.identifiers = identifiers self.layers = layers self.nodes = nodes + if not isinstance(self.nodes, list): + self.nodes = [self.nodes for i in range(self.layers)] + if len(self.nodes) != self.layers: + self.layers = len(self.nodes) + logger.warning("Number of layers not equal to the given nodes " + "per layer - adjusted to " + str(self.layers)) self.dropout = dropout self.batch_size = batch_size self.validation_split = validation_split @@ -583,10 +589,10 @@ class ClassificationProject(object): self._model = Sequential() # first hidden layer - self._model.add(Dense(self.nodes, input_dim=len(self.fields), activation=self.activation_function)) + self._model.add(Dense(self.nodes[0], input_dim=len(self.fields), activation=self.activation_function)) # the other hidden layers - for layer_number in range(self.layers-1): - self._model.add(Dense(self.nodes, activation=self.activation_function)) + for node_count, layer_number in zip(self.nodes[1:], range(self.layers-1)): + self._model.add(Dense(node_count, activation=self.activation_function)) if self.dropout is not None: self._model.add(Dropout(rate=self.dropout)) # last layer is one neuron (binary classification) diff --git a/utils.py b/utils.py index adf213f7edb71086fa8e9148a77062565f098f0e..1da306ca79f3b350d9e12708c942254ddebea067 100644 --- a/utils.py +++ b/utils.py @@ -6,6 +6,7 @@ import numpy as np import keras.backend as K from sklearn.preprocessing import RobustScaler +from sklearn.preprocessing.data import _handle_zeros_in_scale from meme import cache @@ -140,5 +141,6 @@ class WeightedRobustScaler(RobustScaler): wqs = np.array([weighted_quantile(X[:,i], [0.25, 0.5, 0.75], sample_weight=weights) for i in range(X.shape[1])]) self.center_ = wqs[:,1] self.scale_ = wqs[:,2]-wqs[:,0] + self.scale_ = _handle_zeros_in_scale(self.scale_, copy=False) return self