#!/usr/bin/env python import logging from optimizer import Optimizer from tqdm import tqdm # Setup logging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.DEBUG, filename='log.txt' ) def train_networks(networks): """Train each network. Args: networks (list): Current population of networks """ pbar = tqdm(total=len(networks)) for network in networks: network.train() pbar.update(1) pbar.close() def get_average_accuracy(networks): """Get the average accuracy for a group of networks. Args: networks (list): List of networks Returns: float: The average accuracy of a population of networks. """ total_accuracy = 0 for network in networks: total_accuracy += network.accuracy return total_accuracy / len(networks) def generate(generations, population, nn_param_choices): """Generate a network with the genetic algorithm. Args: generations (int): Number of times to evole the population population (int): Number of networks in each generation nn_param_choices (dict): Parameter choices for networks """ optimizer = Optimizer(nn_param_choices) networks = optimizer.create_population(population) # Evolve the generation. for i in range(generations): logging.info("***Doing generation %d of %d***" % (i + 1, generations)) # Train and get accuracy for networks. train_networks(networks) # Get the average accuracy for this generation. average_accuracy = get_average_accuracy(networks) # Print out the average accuracy each generation. logging.info("Generation average: %.2f%%" % (average_accuracy * 100)) logging.info('-'*80) # Evolve, except on the last iteration. if i != generations - 1: # Do the evolution. networks = optimizer.evolve(networks) # Sort our final population. networks = sorted(networks, key=lambda x: x.accuracy, reverse=True) # Print out the top 5 networks. print_networks(networks[:5]) def print_networks(networks): """Print a list of networks. Args: networks (list): The population of networks """ logging.info('-'*80) for network in networks: network.print_network() def main(): """Evolve a network.""" generations = 7 # Number of times to evolve the population. population = 5 # Number of networks in each generation. nn_param_choices = { 'nb_neurons': [8, 16, 32, 64, 128, 256, 512, 768, 1024], 'nb_layers': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'activation': ['relu', 'elu', 'tanh', 'sigmoid'], #'optimizer': ['rmsprop', 'adam', 'sgd', 'adagrad', # 'adadelta', 'adamax', 'nadam'], #'optimizer_opts': {'lr': [0.1, 0.5, 1.0, 10.0, 100.0], # 'decay': [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7], # 'momentum': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, # 0.8, 0.9, 1.0]}, 'lr': [0.1, 0.5, 1.0, 10.0, 100.0], 'decay': [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7], 'momentum': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] } logging.info("***Evolving %d generations with population %d***" % (generations, population)) generate(generations, population, nn_param_choices) if __name__ == '__main__': main()