from __future__ import print_function from glob import glob import keras from keras.callbacks import ModelCheckpoint from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential from data import get_mnist_data, num_classes, input_shape from read_activations import get_activations, display_activations if __name__ == '__main__': checkpoints = glob('checkpoints/*.h5') # pip3 install natsort from natsort import natsorted from keras.models import load_model if len(checkpoints) > 0: checkpoints = natsorted(checkpoints) assert len(checkpoints) != 0, 'No checkpoints found.' checkpoint_file = checkpoints[-1] print('Loading [{}]'.format(checkpoint_file)) model = load_model(checkpoint_file) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) print(model.summary()) x_train, y_train, x_test, y_test = get_mnist_data() # checking that the accuracy is the same as before 99% at the first epoch. test_loss, test_acc = model.evaluate(x_test, y_test, verbose=1, batch_size=128) print('') assert test_acc > 0.98 a = get_activations(model, x_test[0:1], print_shape_only=True) # with just one sample. display_activations(a) get_activations(model, x_test[0:200], print_shape_only=True) # with 200 samples. # import numpy as np # import matplotlib.pyplot as plt # plt.imshow(np.squeeze(x_test[0:1]), interpolation='None', cmap='gray') else: x_train, y_train, x_test, y_test = get_mnist_data() model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) # Change starts here import shutil import os # delete folder and its content and creates a new one. try: shutil.rmtree('checkpoints') except: pass os.mkdir('checkpoints') checkpoint = ModelCheckpoint(monitor='val_acc', filepath='checkpoints/model_{epoch:02d}_{val_acc:.3f}.h5', save_best_only=True) model.fit(x_train, y_train, batch_size=128, epochs=12, verbose=1, validation_data=(x_test, y_test), callbacks=[checkpoint]) # Change finishes here score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])