import keras.backend as K import numpy as np from keras.layers import merge, Dense from keras.models import Input, Model, Sequential def get_multi_inputs_model(): a = Input(shape=(10,)) b = Input(shape=(10,)) c = merge([a, b], mode='mul') c = Dense(1, activation='sigmoid', name='only_this_layer')(c) m_multi = Model(inputs=[a, b], outputs=c) return m_multi def get_single_inputs_model(): m_single = Sequential() m_single.add(Dense(1, activation='sigmoid', input_shape=(10,))) return m_single if __name__ == '__main__': m = get_multi_inputs_model() m.compile(optimizer='adam', loss='binary_crossentropy') inp_a = np.random.uniform(size=(100, 10)) inp_b = np.random.uniform(size=(100, 10)) inp_o = np.random.randint(low=0, high=2, size=(100, 1)) m.fit([inp_a, inp_b], inp_o) from read_activations import * get_activations(m, [inp_a[0:1], inp_b[0:1]], print_shape_only=True) get_activations(m, [inp_a[0:1], inp_b[0:1]], print_shape_only=True, layer_name='only_this_layer') m2 = get_single_inputs_model() m2.compile(optimizer='adam', loss='binary_crossentropy') m2.fit([inp_a], inp_o) get_activations(m2, [inp_a[0]], print_shape_only=True)