diff --git a/Genetic_Algorithm/log.txt b/Genetic_Algorithm/log.txt new file mode 100755 index 0000000000000000000000000000000000000000..65da0d9bad97b26c3110a656e699a5f81667db13 --- /dev/null +++ b/Genetic_Algorithm/log.txt @@ -0,0 +1,6573 @@ +05/03/2018 07:02:48 PM - INFO - ***Evolving 10 generations with population 20*** +05/03/2018 07:02:48 PM - INFO - ***Doing generation 1 of 10*** +05/03/2018 07:04:25 PM - INFO - ***Evolving 10 generations with population 20*** +05/03/2018 07:04:25 PM - INFO - ***Doing generation 1 of 10*** +05/03/2018 07:05:21 PM - INFO - ***Evolving 10 generations with population 20*** +05/03/2018 07:05:21 PM - INFO - ***Doing generation 1 of 10*** +05/03/2018 07:08:40 PM - INFO - ***Evolving 10 generations with population 20*** +05/03/2018 07:08:40 PM - INFO - ***Doing generation 1 of 10*** +05/03/2018 07:08:40 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:08:40 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:08:47 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:08:47 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:08:47 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:08:47 PM - INFO - Creating new RobustScaler +05/03/2018 07:08:47 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:08:47 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:08:47 PM - INFO - Training and test data transformed +05/03/2018 07:08:48 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:08:48 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:08:48 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:08:48 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:08:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:08:48 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:08:49 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:08:49 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:08:49 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:08:49 PM - DEBUG - findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans (u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf') with score of 0.050000 +05/03/2018 07:08:49 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:08:49 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:08:49 PM - DEBUG - Writing TrueType font. +05/03/2018 07:08:49 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:08:49 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:08:49 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:08:49 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:08:49 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:08:49 PM - DEBUG - Writing TrueType font. +05/03/2018 07:08:49 PM - INFO - Train model +05/03/2018 07:08:49 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:17:44 PM - INFO - ***Evolving 10 generations with population 20*** +05/03/2018 07:17:44 PM - INFO - ***Doing generation 1 of 10*** +05/03/2018 07:17:44 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:17:44 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:17:46 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:17:46 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:17:46 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:17:46 PM - INFO - Creating new RobustScaler +05/03/2018 07:17:46 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:17:46 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:17:46 PM - INFO - Training and test data transformed +05/03/2018 07:17:46 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:17:46 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:17:46 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:17:46 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:17:46 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:17:46 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:17:46 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:17:46 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:17:46 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:17:46 PM - DEBUG - findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans (u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf') with score of 0.050000 +05/03/2018 07:17:46 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:17:46 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:17:46 PM - DEBUG - Writing TrueType font. +05/03/2018 07:17:46 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:17:46 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:17:46 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:17:47 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:17:47 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:17:47 PM - DEBUG - Writing TrueType font. +05/03/2018 07:17:47 PM - INFO - Train model +05/03/2018 07:17:47 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:17:47 PM - INFO - KeyError +05/03/2018 07:17:47 PM - INFO - Using sgd(**{}) as Optimizer +05/03/2018 07:17:47 PM - INFO - Compile model +05/03/2018 07:17:47 PM - INFO - No weights found, starting completely new model +05/03/2018 07:17:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:18:24 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:18:28 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:19:58 PM - INFO - ***Evolving 10 generations with population 20*** +05/03/2018 07:19:58 PM - INFO - ***Doing generation 1 of 10*** +05/03/2018 07:19:58 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:19:58 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:20:00 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:20:00 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:20:00 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:20:00 PM - INFO - Creating new RobustScaler +05/03/2018 07:20:00 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:20:00 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:20:00 PM - INFO - Training and test data transformed +05/03/2018 07:20:01 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:20:01 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:20:01 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:20:01 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:20:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:20:01 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:20:01 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:20:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:20:01 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:20:01 PM - DEBUG - findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans (u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf') with score of 0.050000 +05/03/2018 07:20:01 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:20:01 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:20:01 PM - DEBUG - Writing TrueType font. +05/03/2018 07:20:01 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:20:01 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:20:01 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:20:01 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:20:01 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:20:01 PM - DEBUG - Writing TrueType font. +05/03/2018 07:20:01 PM - INFO - Train model +05/03/2018 07:20:01 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:20:01 PM - INFO - KeyError +05/03/2018 07:20:01 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:20:01 PM - INFO - Compile model +05/03/2018 07:20:01 PM - INFO - No weights found, starting completely new model +05/03/2018 07:20:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:20:09 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:20:11 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:21:08 PM - INFO - ***Evolving 10 generations with population 20*** +05/03/2018 07:21:08 PM - INFO - ***Doing generation 1 of 10*** +05/03/2018 07:21:08 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:21:08 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:21:09 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:21:09 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:21:09 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:21:09 PM - INFO - Creating new RobustScaler +05/03/2018 07:21:09 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:21:09 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:21:09 PM - INFO - Training and test data transformed +05/03/2018 07:21:10 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:21:10 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:21:10 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:21:10 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:21:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:21:10 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:21:10 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:21:11 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:21:11 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:21:11 PM - DEBUG - findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans (u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf') with score of 0.050000 +05/03/2018 07:21:11 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:21:11 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:21:11 PM - DEBUG - Writing TrueType font. +05/03/2018 07:21:11 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:21:11 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:21:11 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:21:11 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:21:11 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:21:11 PM - DEBUG - Writing TrueType font. +05/03/2018 07:21:11 PM - INFO - Train model +05/03/2018 07:21:11 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:21:11 PM - INFO - KeyError +05/03/2018 07:21:11 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:21:11 PM - INFO - Compile model +05/03/2018 07:21:11 PM - INFO - No weights found, starting completely new model +05/03/2018 07:21:11 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:21:51 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:21:56 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:23:12 PM - INFO - ***Evolving 10 generations with population 20*** +05/03/2018 07:23:12 PM - INFO - ***Doing generation 1 of 10*** +05/03/2018 07:23:12 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:23:12 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:23:13 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:23:13 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:23:13 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:23:13 PM - INFO - Creating new RobustScaler +05/03/2018 07:23:13 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:23:13 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:23:13 PM - INFO - Training and test data transformed +05/03/2018 07:23:14 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:23:14 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:23:14 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:23:14 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:23:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:23:14 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:23:14 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:23:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:23:14 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:23:14 PM - DEBUG - findfont: Matching :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans (u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf') with score of 0.050000 +05/03/2018 07:23:14 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:23:14 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:23:14 PM - DEBUG - Writing TrueType font. +05/03/2018 07:23:14 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:23:14 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:23:14 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:23:14 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:23:14 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:23:14 PM - DEBUG - Writing TrueType font. +05/03/2018 07:23:14 PM - INFO - Train model +05/03/2018 07:23:14 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:23:14 PM - INFO - KeyError +05/03/2018 07:23:14 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:23:14 PM - INFO - Compile model +05/03/2018 07:23:14 PM - INFO - No weights found, starting completely new model +05/03/2018 07:23:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:23:49 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:23:51 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:23:53 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:23:53 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:23:55 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:23:55 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:23:55 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:23:55 PM - INFO - Creating new RobustScaler +05/03/2018 07:23:55 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:23:55 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:23:55 PM - INFO - Training and test data transformed +05/03/2018 07:23:55 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:23:55 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:23:55 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:23:55 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:23:55 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:23:55 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:23:55 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:23:55 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:23:55 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:23:55 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:23:55 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:23:55 PM - DEBUG - Writing TrueType font. +05/03/2018 07:23:55 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:23:55 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:23:55 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:23:55 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:23:55 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:23:55 PM - DEBUG - Writing TrueType font. +05/03/2018 07:23:55 PM - INFO - Train model +05/03/2018 07:23:55 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:23:55 PM - INFO - KeyError +05/03/2018 07:23:55 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:23:55 PM - INFO - Compile model +05/03/2018 07:23:55 PM - INFO - No weights found, starting completely new model +05/03/2018 07:23:55 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:01 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:24:02 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:24:03 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:24:03 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:24:04 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:24:04 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:24:04 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:24:04 PM - INFO - Creating new RobustScaler +05/03/2018 07:24:04 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:24:04 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:24:04 PM - INFO - Training and test data transformed +05/03/2018 07:24:04 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:24:04 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:24:04 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:24:04 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:24:04 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:04 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:24:04 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:24:04 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:04 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:24:04 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:04 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:04 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:04 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:24:04 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:24:04 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:24:04 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:04 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:04 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:04 PM - INFO - Train model +05/03/2018 07:24:04 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:24:04 PM - INFO - KeyError +05/03/2018 07:24:04 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:24:04 PM - INFO - Compile model +05/03/2018 07:24:04 PM - INFO - No weights found, starting completely new model +05/03/2018 07:24:04 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:09 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:24:10 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:24:11 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:24:11 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:24:12 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:24:12 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:24:12 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:24:12 PM - INFO - Creating new RobustScaler +05/03/2018 07:24:12 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:24:12 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:24:12 PM - INFO - Training and test data transformed +05/03/2018 07:24:12 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:24:12 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:24:12 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:24:12 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:24:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:12 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:24:12 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:24:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:12 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:24:12 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:13 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:13 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:24:13 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:24:13 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:24:13 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:13 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:13 PM - INFO - Train model +05/03/2018 07:24:13 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:24:13 PM - INFO - KeyError +05/03/2018 07:24:13 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:24:13 PM - INFO - Compile model +05/03/2018 07:24:13 PM - INFO - No weights found, starting completely new model +05/03/2018 07:24:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:22 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:24:23 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:24:24 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:24:24 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:24:26 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:24:26 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:24:26 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:24:26 PM - INFO - Creating new RobustScaler +05/03/2018 07:24:26 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:24:26 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:24:26 PM - INFO - Training and test data transformed +05/03/2018 07:24:26 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:24:26 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:24:26 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:24:26 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:24:26 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:26 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:24:26 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:24:26 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:26 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:24:26 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:26 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:26 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:26 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:24:26 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:24:26 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:24:26 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:26 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:26 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:26 PM - INFO - Train model +05/03/2018 07:24:26 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:24:26 PM - INFO - KeyError +05/03/2018 07:24:26 PM - INFO - Using sgd(**{}) as Optimizer +05/03/2018 07:24:26 PM - INFO - Compile model +05/03/2018 07:24:26 PM - INFO - No weights found, starting completely new model +05/03/2018 07:24:26 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:33 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:24:35 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:24:36 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:24:36 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:24:38 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:24:38 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:24:38 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:24:38 PM - INFO - Creating new RobustScaler +05/03/2018 07:24:38 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:24:38 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:24:38 PM - INFO - Training and test data transformed +05/03/2018 07:24:38 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:24:38 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:24:38 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:24:38 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:24:38 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:38 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:24:38 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:24:38 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:38 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:24:38 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:38 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:38 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:38 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:24:38 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:24:38 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:24:38 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:38 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:38 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:38 PM - INFO - Train model +05/03/2018 07:24:38 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:24:38 PM - INFO - KeyError +05/03/2018 07:24:38 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:24:38 PM - INFO - Compile model +05/03/2018 07:24:38 PM - INFO - No weights found, starting completely new model +05/03/2018 07:24:38 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:44 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:24:45 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:24:46 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:24:46 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:24:47 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:24:47 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:24:47 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:24:47 PM - INFO - Creating new RobustScaler +05/03/2018 07:24:47 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:24:47 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:24:47 PM - INFO - Training and test data transformed +05/03/2018 07:24:47 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:24:47 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:24:47 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:24:47 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:24:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:47 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:24:47 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:24:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:24:48 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:24:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:48 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:48 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:24:48 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:24:48 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:24:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:24:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:24:48 PM - DEBUG - Writing TrueType font. +05/03/2018 07:24:48 PM - INFO - Train model +05/03/2018 07:24:48 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:24:48 PM - INFO - KeyError +05/03/2018 07:24:48 PM - INFO - Using adadelta(**{}) as Optimizer +05/03/2018 07:24:48 PM - INFO - Compile model +05/03/2018 07:24:48 PM - INFO - No weights found, starting completely new model +05/03/2018 07:24:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:25:25 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:25:28 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:25:29 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:25:29 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:25:31 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:25:31 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:25:31 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:25:31 PM - INFO - Creating new RobustScaler +05/03/2018 07:25:31 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:25:31 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:25:31 PM - INFO - Training and test data transformed +05/03/2018 07:25:31 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:25:31 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:25:31 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:25:31 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:25:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:25:31 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:25:31 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:25:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:25:31 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:25:31 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:25:31 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:25:31 PM - DEBUG - Writing TrueType font. +05/03/2018 07:25:31 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:25:31 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:25:31 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:25:31 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:25:31 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:25:31 PM - DEBUG - Writing TrueType font. +05/03/2018 07:25:31 PM - INFO - Train model +05/03/2018 07:25:31 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:25:31 PM - INFO - KeyError +05/03/2018 07:25:31 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:25:31 PM - INFO - Compile model +05/03/2018 07:25:31 PM - INFO - No weights found, starting completely new model +05/03/2018 07:25:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:25:37 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:25:38 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:25:39 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:25:39 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:25:41 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:25:41 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:25:41 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:25:41 PM - INFO - Creating new RobustScaler +05/03/2018 07:25:41 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:25:41 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:25:41 PM - INFO - Training and test data transformed +05/03/2018 07:25:41 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:25:41 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:25:41 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:25:41 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:25:41 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:25:41 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:25:41 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:25:41 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:25:41 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:25:41 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:25:41 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:25:41 PM - DEBUG - Writing TrueType font. +05/03/2018 07:25:41 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:25:41 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:25:41 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:25:41 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:25:41 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:25:41 PM - DEBUG - Writing TrueType font. +05/03/2018 07:25:41 PM - INFO - Train model +05/03/2018 07:25:41 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:25:41 PM - INFO - KeyError +05/03/2018 07:25:41 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:25:41 PM - INFO - Compile model +05/03/2018 07:25:41 PM - INFO - No weights found, starting completely new model +05/03/2018 07:25:41 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:26:38 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:26:43 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:26:46 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:26:46 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:26:47 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:26:47 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:26:47 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:26:47 PM - INFO - Creating new RobustScaler +05/03/2018 07:26:47 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:26:47 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:26:47 PM - INFO - Training and test data transformed +05/03/2018 07:26:47 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:26:47 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:26:47 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:26:47 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:26:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:26:47 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:26:47 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:26:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:26:48 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:26:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:26:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:26:48 PM - DEBUG - Writing TrueType font. +05/03/2018 07:26:48 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:26:48 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:26:48 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:26:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:26:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:26:48 PM - DEBUG - Writing TrueType font. +05/03/2018 07:26:48 PM - INFO - Train model +05/03/2018 07:26:48 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:26:48 PM - INFO - KeyError +05/03/2018 07:26:48 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:26:48 PM - INFO - Compile model +05/03/2018 07:26:48 PM - INFO - No weights found, starting completely new model +05/03/2018 07:26:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:26:56 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:26:58 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:26:59 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:26:59 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:27:00 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:27:00 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:27:00 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:27:00 PM - INFO - Creating new RobustScaler +05/03/2018 07:27:00 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:27:00 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:27:00 PM - INFO - Training and test data transformed +05/03/2018 07:27:00 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:27:00 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:27:00 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:27:00 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:27:00 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:00 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:27:00 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:27:00 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:00 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:27:00 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:00 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:00 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:00 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:27:00 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:27:00 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:27:01 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:01 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:01 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:01 PM - INFO - Train model +05/03/2018 07:27:01 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:27:01 PM - INFO - KeyError +05/03/2018 07:27:01 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:27:01 PM - INFO - Compile model +05/03/2018 07:27:01 PM - INFO - No weights found, starting completely new model +05/03/2018 07:27:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:06 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:27:07 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:27:08 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:27:08 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:27:09 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:27:09 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:27:09 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:27:09 PM - INFO - Creating new RobustScaler +05/03/2018 07:27:09 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:27:09 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:27:09 PM - INFO - Training and test data transformed +05/03/2018 07:27:09 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:27:09 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:27:09 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:27:09 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:27:09 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:09 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:27:09 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:27:09 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:09 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:27:09 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:09 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:09 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:09 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:27:09 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:27:09 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:27:09 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:09 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:09 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:09 PM - INFO - Train model +05/03/2018 07:27:09 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:27:09 PM - INFO - KeyError +05/03/2018 07:27:09 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:27:09 PM - INFO - Compile model +05/03/2018 07:27:09 PM - INFO - No weights found, starting completely new model +05/03/2018 07:27:09 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:16 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:27:17 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:27:18 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:27:18 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:27:20 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:27:20 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:27:20 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:27:20 PM - INFO - Creating new RobustScaler +05/03/2018 07:27:20 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:27:20 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:27:20 PM - INFO - Training and test data transformed +05/03/2018 07:27:20 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:27:20 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:27:20 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:27:20 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:27:20 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:20 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:27:20 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:27:20 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:20 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:27:20 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:20 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:20 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:20 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:27:20 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:27:20 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:27:20 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:20 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:20 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:20 PM - INFO - Train model +05/03/2018 07:27:20 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:27:20 PM - INFO - KeyError +05/03/2018 07:27:20 PM - INFO - Using sgd(**{}) as Optimizer +05/03/2018 07:27:20 PM - INFO - Compile model +05/03/2018 07:27:20 PM - INFO - No weights found, starting completely new model +05/03/2018 07:27:20 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:25 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:27:26 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:27:27 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:27:27 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:27:28 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:27:28 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:27:28 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:27:28 PM - INFO - Creating new RobustScaler +05/03/2018 07:27:28 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:27:28 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:27:28 PM - INFO - Training and test data transformed +05/03/2018 07:27:28 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:27:28 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:27:28 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:27:28 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:27:28 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:28 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:27:28 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:27:29 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:29 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:27:29 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:29 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:29 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:29 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:27:29 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:27:29 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:27:29 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:29 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:29 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:29 PM - INFO - Train model +05/03/2018 07:27:29 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:27:29 PM - INFO - KeyError +05/03/2018 07:27:29 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:27:29 PM - INFO - Compile model +05/03/2018 07:27:29 PM - INFO - No weights found, starting completely new model +05/03/2018 07:27:29 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:42 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:27:44 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:27:45 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:27:45 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:27:46 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:27:46 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:27:46 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:27:46 PM - INFO - Creating new RobustScaler +05/03/2018 07:27:46 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:27:46 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:27:46 PM - INFO - Training and test data transformed +05/03/2018 07:27:46 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:27:46 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:27:46 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:27:46 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:27:46 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:46 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:27:46 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:27:46 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:46 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:27:46 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:47 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:47 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:47 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:27:47 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:27:47 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:27:47 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:47 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:47 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:47 PM - INFO - Train model +05/03/2018 07:27:47 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:27:47 PM - INFO - KeyError +05/03/2018 07:27:47 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 07:27:47 PM - INFO - Compile model +05/03/2018 07:27:47 PM - INFO - No weights found, starting completely new model +05/03/2018 07:27:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:52 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:27:53 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:27:54 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:27:54 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:27:55 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:27:55 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:27:55 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:27:55 PM - INFO - Creating new RobustScaler +05/03/2018 07:27:55 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:27:55 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:27:55 PM - INFO - Training and test data transformed +05/03/2018 07:27:55 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:27:55 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:27:55 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:27:55 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:27:55 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:55 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:27:55 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:27:55 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:27:55 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:27:55 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:55 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:55 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:55 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:27:55 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:27:55 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:27:55 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:27:55 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:27:55 PM - DEBUG - Writing TrueType font. +05/03/2018 07:27:56 PM - INFO - Train model +05/03/2018 07:27:56 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:27:56 PM - INFO - KeyError +05/03/2018 07:27:56 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:27:56 PM - INFO - Compile model +05/03/2018 07:27:56 PM - INFO - No weights found, starting completely new model +05/03/2018 07:27:56 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:28:03 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:28:05 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:28:06 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:28:06 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:28:07 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:28:07 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:28:07 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:28:07 PM - INFO - Creating new RobustScaler +05/03/2018 07:28:07 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:28:07 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:28:07 PM - INFO - Training and test data transformed +05/03/2018 07:28:07 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:28:07 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:28:07 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:28:07 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:28:07 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:28:07 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:28:07 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:28:07 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:28:07 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:28:07 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:28:07 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:28:07 PM - DEBUG - Writing TrueType font. +05/03/2018 07:28:08 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:28:08 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:28:08 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:28:08 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:28:08 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:28:08 PM - DEBUG - Writing TrueType font. +05/03/2018 07:28:08 PM - INFO - Train model +05/03/2018 07:28:08 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:28:08 PM - INFO - KeyError +05/03/2018 07:28:08 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:28:08 PM - INFO - Compile model +05/03/2018 07:28:08 PM - INFO - No weights found, starting completely new model +05/03/2018 07:28:08 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:29:34 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:29:42 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:29:46 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:29:46 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:29:47 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:29:47 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:29:47 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:29:47 PM - INFO - Creating new RobustScaler +05/03/2018 07:29:47 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:29:47 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:29:47 PM - INFO - Training and test data transformed +05/03/2018 07:29:47 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:29:47 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:29:47 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:29:47 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:29:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:29:47 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:29:47 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:29:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:29:47 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:29:47 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:29:47 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:29:47 PM - DEBUG - Writing TrueType font. +05/03/2018 07:29:47 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:29:47 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:29:47 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:29:47 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:29:47 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:29:47 PM - DEBUG - Writing TrueType font. +05/03/2018 07:29:47 PM - INFO - Train model +05/03/2018 07:29:47 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:29:47 PM - INFO - KeyError +05/03/2018 07:29:48 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:29:48 PM - INFO - Compile model +05/03/2018 07:29:48 PM - INFO - No weights found, starting completely new model +05/03/2018 07:29:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:29:55 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:29:56 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:29:57 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:29:57 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:29:59 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:29:59 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:29:59 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:29:59 PM - INFO - Creating new RobustScaler +05/03/2018 07:29:59 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:29:59 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:29:59 PM - INFO - Training and test data transformed +05/03/2018 07:29:59 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:29:59 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:29:59 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:29:59 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:29:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:29:59 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:29:59 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:29:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:29:59 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:29:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:29:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:29:59 PM - DEBUG - Writing TrueType font. +05/03/2018 07:29:59 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:29:59 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:29:59 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:29:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:29:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:29:59 PM - DEBUG - Writing TrueType font. +05/03/2018 07:29:59 PM - INFO - Train model +05/03/2018 07:29:59 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:29:59 PM - INFO - KeyError +05/03/2018 07:29:59 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:29:59 PM - INFO - Compile model +05/03/2018 07:29:59 PM - INFO - No weights found, starting completely new model +05/03/2018 07:29:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:30:06 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:30:08 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:30:09 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:30:09 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:30:10 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:30:10 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:30:10 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:30:10 PM - INFO - Creating new RobustScaler +05/03/2018 07:30:10 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:30:10 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:30:10 PM - INFO - Training and test data transformed +05/03/2018 07:30:10 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:30:10 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:30:10 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:30:10 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:30:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:30:10 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:30:10 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:30:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:30:10 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:30:10 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:30:10 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:30:10 PM - DEBUG - Writing TrueType font. +05/03/2018 07:30:11 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:30:11 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:30:11 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:30:11 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:30:11 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:30:11 PM - DEBUG - Writing TrueType font. +05/03/2018 07:30:11 PM - INFO - Train model +05/03/2018 07:30:11 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:30:11 PM - INFO - KeyError +05/03/2018 07:30:11 PM - INFO - Using sgd(**{}) as Optimizer +05/03/2018 07:30:11 PM - INFO - Compile model +05/03/2018 07:30:11 PM - INFO - No weights found, starting completely new model +05/03/2018 07:30:11 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:30:31 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:30:34 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:30:36 PM - INFO - Generation average: 88.28% +05/03/2018 07:30:36 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 07:30:36 PM - INFO - ***Doing generation 2 of 10*** +05/03/2018 07:30:36 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:30:36 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:30:37 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:30:37 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:30:37 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:30:37 PM - INFO - Creating new RobustScaler +05/03/2018 07:30:37 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:30:37 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:30:37 PM - INFO - Training and test data transformed +05/03/2018 07:30:37 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:30:37 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:30:37 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:30:37 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:30:37 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:30:37 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:30:37 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:30:37 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:30:37 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:30:37 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:30:37 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:30:37 PM - DEBUG - Writing TrueType font. +05/03/2018 07:30:37 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:30:37 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:30:37 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:30:37 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:30:37 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:30:37 PM - DEBUG - Writing TrueType font. +05/03/2018 07:30:37 PM - INFO - Train model +05/03/2018 07:30:37 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:30:37 PM - INFO - KeyError +05/03/2018 07:30:38 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:30:38 PM - INFO - Compile model +05/03/2018 07:30:38 PM - INFO - No weights found, starting completely new model +05/03/2018 07:30:38 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:30:55 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:30:58 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:31:00 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:31:00 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:31:01 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:31:01 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:31:01 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:31:01 PM - INFO - Creating new RobustScaler +05/03/2018 07:31:01 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:31:01 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:31:01 PM - INFO - Training and test data transformed +05/03/2018 07:31:01 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:31:01 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:31:01 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:31:01 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:31:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:02 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:31:02 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:31:02 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:02 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:31:02 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:02 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:02 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:02 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:31:02 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:31:02 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:31:02 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:02 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:02 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:02 PM - INFO - Train model +05/03/2018 07:31:02 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:31:02 PM - INFO - KeyError +05/03/2018 07:31:02 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:31:02 PM - INFO - Compile model +05/03/2018 07:31:02 PM - INFO - No weights found, starting completely new model +05/03/2018 07:31:02 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:08 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:31:10 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:31:11 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:31:11 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:31:12 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:31:12 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:31:12 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:31:12 PM - INFO - Creating new RobustScaler +05/03/2018 07:31:12 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:31:12 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:31:12 PM - INFO - Training and test data transformed +05/03/2018 07:31:12 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:31:12 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:31:12 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:31:12 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:31:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:12 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:31:12 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:31:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:12 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:31:12 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:12 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:12 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:13 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:31:13 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:31:13 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:31:13 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:13 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:13 PM - INFO - Train model +05/03/2018 07:31:13 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:31:13 PM - INFO - KeyError +05/03/2018 07:31:13 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:31:13 PM - INFO - Compile model +05/03/2018 07:31:13 PM - INFO - No weights found, starting completely new model +05/03/2018 07:31:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:19 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:31:20 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:31:21 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:31:21 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:31:22 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:31:22 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:31:22 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:31:22 PM - INFO - Creating new RobustScaler +05/03/2018 07:31:22 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:31:22 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:31:22 PM - INFO - Training and test data transformed +05/03/2018 07:31:23 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:31:23 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:31:23 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:31:23 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:31:23 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:23 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:31:23 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:31:23 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:23 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:31:23 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:23 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:23 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:23 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:31:23 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:31:23 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:31:23 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:23 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:23 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:23 PM - INFO - Train model +05/03/2018 07:31:23 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:31:23 PM - INFO - KeyError +05/03/2018 07:31:23 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:31:23 PM - INFO - Compile model +05/03/2018 07:31:23 PM - INFO - No weights found, starting completely new model +05/03/2018 07:31:23 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:27 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:31:29 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:31:30 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:31:30 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:31:31 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:31:31 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:31:31 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:31:31 PM - INFO - Creating new RobustScaler +05/03/2018 07:31:31 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:31:31 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:31:31 PM - INFO - Training and test data transformed +05/03/2018 07:31:31 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:31:31 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:31:31 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:31:31 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:31:32 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:32 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:31:32 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:31:32 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:32 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:31:32 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:32 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:32 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:32 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:31:32 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:31:32 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:31:32 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:32 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:32 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:32 PM - INFO - Train model +05/03/2018 07:31:32 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:31:32 PM - INFO - KeyError +05/03/2018 07:31:32 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:31:32 PM - INFO - Compile model +05/03/2018 07:31:32 PM - INFO - No weights found, starting completely new model +05/03/2018 07:31:32 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:48 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:31:50 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:31:52 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:31:52 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:31:53 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:31:53 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:31:53 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:31:53 PM - INFO - Creating new RobustScaler +05/03/2018 07:31:53 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:31:53 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:31:53 PM - INFO - Training and test data transformed +05/03/2018 07:31:53 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:31:53 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:31:53 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:31:53 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:31:53 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:53 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:31:53 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:31:53 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:31:53 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:31:53 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:53 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:53 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:54 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:31:54 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:31:54 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:31:54 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:31:54 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:31:54 PM - DEBUG - Writing TrueType font. +05/03/2018 07:31:54 PM - INFO - Train model +05/03/2018 07:31:54 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:31:54 PM - INFO - KeyError +05/03/2018 07:31:54 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:31:54 PM - INFO - Compile model +05/03/2018 07:31:54 PM - INFO - No weights found, starting completely new model +05/03/2018 07:31:54 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:06 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:32:08 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:32:09 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:32:09 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:32:10 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:32:10 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:32:10 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:32:10 PM - INFO - Creating new RobustScaler +05/03/2018 07:32:10 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:32:10 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:32:10 PM - INFO - Training and test data transformed +05/03/2018 07:32:10 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:32:10 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:32:10 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:32:10 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:32:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:10 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:32:10 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:32:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:10 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:32:10 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:10 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:10 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:10 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:32:10 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:32:10 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:32:10 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:11 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:11 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:11 PM - INFO - Train model +05/03/2018 07:32:11 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:32:11 PM - INFO - KeyError +05/03/2018 07:32:11 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:32:11 PM - INFO - Compile model +05/03/2018 07:32:11 PM - INFO - No weights found, starting completely new model +05/03/2018 07:32:11 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:16 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:32:17 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:32:18 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:32:18 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:32:19 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:32:19 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:32:19 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:32:19 PM - INFO - Creating new RobustScaler +05/03/2018 07:32:19 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:32:20 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:32:20 PM - INFO - Training and test data transformed +05/03/2018 07:32:20 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:32:20 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:32:20 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:32:20 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:32:20 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:20 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:32:20 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:32:20 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:20 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:32:20 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:20 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:20 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:20 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:32:20 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:32:20 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:32:20 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:20 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:20 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:20 PM - INFO - Train model +05/03/2018 07:32:20 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:32:20 PM - INFO - KeyError +05/03/2018 07:32:20 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:32:20 PM - INFO - Compile model +05/03/2018 07:32:20 PM - INFO - No weights found, starting completely new model +05/03/2018 07:32:20 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:28 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:32:30 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:32:32 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:32:32 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:32:33 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:32:33 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:32:33 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:32:33 PM - INFO - Creating new RobustScaler +05/03/2018 07:32:33 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:32:33 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:32:33 PM - INFO - Training and test data transformed +05/03/2018 07:32:33 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:32:33 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:32:33 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:32:33 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:32:33 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:33 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:32:33 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:32:33 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:33 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:32:33 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:33 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:33 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:33 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:32:33 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:32:33 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:32:33 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:33 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:33 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:33 PM - INFO - Train model +05/03/2018 07:32:34 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:32:34 PM - INFO - KeyError +05/03/2018 07:32:34 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:32:34 PM - INFO - Compile model +05/03/2018 07:32:34 PM - INFO - No weights found, starting completely new model +05/03/2018 07:32:34 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:40 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:32:42 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:32:43 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:32:43 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:32:44 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:32:44 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:32:44 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:32:44 PM - INFO - Creating new RobustScaler +05/03/2018 07:32:44 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:32:44 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:32:44 PM - INFO - Training and test data transformed +05/03/2018 07:32:44 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:32:44 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:32:44 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:32:44 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:32:44 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:44 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:32:45 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:32:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:45 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:32:45 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:45 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:45 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:45 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:32:45 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:32:45 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:32:45 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:45 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:45 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:45 PM - INFO - Train model +05/03/2018 07:32:45 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:32:45 PM - INFO - KeyError +05/03/2018 07:32:45 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 07:32:45 PM - INFO - Compile model +05/03/2018 07:32:45 PM - INFO - No weights found, starting completely new model +05/03/2018 07:32:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:50 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:32:52 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:32:53 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:32:53 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:32:54 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:32:54 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:32:54 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:32:54 PM - INFO - Creating new RobustScaler +05/03/2018 07:32:54 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:32:54 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:32:54 PM - INFO - Training and test data transformed +05/03/2018 07:32:54 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:32:54 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:32:54 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:32:54 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:32:54 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:54 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:32:54 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:32:54 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:32:54 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:32:55 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:55 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:55 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:55 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:32:55 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:32:55 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:32:55 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:32:55 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:32:55 PM - DEBUG - Writing TrueType font. +05/03/2018 07:32:55 PM - INFO - Train model +05/03/2018 07:32:55 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:32:55 PM - INFO - KeyError +05/03/2018 07:32:55 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:32:55 PM - INFO - Compile model +05/03/2018 07:32:55 PM - INFO - No weights found, starting completely new model +05/03/2018 07:32:55 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:26 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:33:29 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:33:31 PM - INFO - Generation average: 96.58% +05/03/2018 07:33:31 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 07:33:31 PM - INFO - ***Doing generation 3 of 10*** +05/03/2018 07:33:31 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:33:31 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:33:33 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:33:33 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:33:33 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:33:33 PM - INFO - Creating new RobustScaler +05/03/2018 07:33:33 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:33:33 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:33:33 PM - INFO - Training and test data transformed +05/03/2018 07:33:33 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:33:33 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:33:33 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:33:33 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:33:33 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:33 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:33:33 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:33:33 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:33 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:33:33 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:33:33 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:33:33 PM - DEBUG - Writing TrueType font. +05/03/2018 07:33:33 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:33:33 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:33:33 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:33:33 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:33:33 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:33:33 PM - DEBUG - Writing TrueType font. +05/03/2018 07:33:33 PM - INFO - Train model +05/03/2018 07:33:33 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:33:33 PM - INFO - KeyError +05/03/2018 07:33:33 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 07:33:33 PM - INFO - Compile model +05/03/2018 07:33:33 PM - INFO - No weights found, starting completely new model +05/03/2018 07:33:33 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:36 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:33:38 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:33:39 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:33:39 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:33:41 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:33:41 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:33:41 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:33:41 PM - INFO - Creating new RobustScaler +05/03/2018 07:33:41 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:33:41 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:33:41 PM - INFO - Training and test data transformed +05/03/2018 07:33:41 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:33:41 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:33:41 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:33:41 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:33:41 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:41 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:33:41 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:33:41 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:41 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:33:41 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:33:41 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:33:41 PM - DEBUG - Writing TrueType font. +05/03/2018 07:33:41 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:33:41 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:33:41 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:33:41 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:33:41 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:33:41 PM - DEBUG - Writing TrueType font. +05/03/2018 07:33:41 PM - INFO - Train model +05/03/2018 07:33:41 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:33:41 PM - INFO - KeyError +05/03/2018 07:33:41 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:33:41 PM - INFO - Compile model +05/03/2018 07:33:41 PM - INFO - No weights found, starting completely new model +05/03/2018 07:33:41 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:46 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:33:48 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:33:49 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:33:49 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:33:51 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:33:51 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:33:51 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:33:51 PM - INFO - Creating new RobustScaler +05/03/2018 07:33:51 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:33:51 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:33:51 PM - INFO - Training and test data transformed +05/03/2018 07:33:51 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:33:51 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:33:51 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:33:51 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:33:51 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:51 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:33:51 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:33:51 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:51 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:33:51 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:33:51 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:33:51 PM - DEBUG - Writing TrueType font. +05/03/2018 07:33:51 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:33:51 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:33:51 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:33:51 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:33:51 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:33:51 PM - DEBUG - Writing TrueType font. +05/03/2018 07:33:51 PM - INFO - Train model +05/03/2018 07:33:51 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:33:51 PM - INFO - KeyError +05/03/2018 07:33:51 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:33:51 PM - INFO - Compile model +05/03/2018 07:33:51 PM - INFO - No weights found, starting completely new model +05/03/2018 07:33:51 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:33:59 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:34:01 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:34:02 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:34:02 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:34:03 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:34:03 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:34:03 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:34:03 PM - INFO - Creating new RobustScaler +05/03/2018 07:34:03 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:34:03 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:34:03 PM - INFO - Training and test data transformed +05/03/2018 07:34:03 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:34:03 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:34:03 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:34:03 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:34:03 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:03 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:34:03 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:34:03 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:03 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:34:03 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:34:03 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:34:03 PM - DEBUG - Writing TrueType font. +05/03/2018 07:34:04 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:34:04 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:34:04 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:34:04 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:34:04 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:34:04 PM - DEBUG - Writing TrueType font. +05/03/2018 07:34:04 PM - INFO - Train model +05/03/2018 07:34:04 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:34:04 PM - INFO - KeyError +05/03/2018 07:34:04 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:34:04 PM - INFO - Compile model +05/03/2018 07:34:04 PM - INFO - No weights found, starting completely new model +05/03/2018 07:34:04 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:09 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:34:11 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:34:12 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:34:12 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:34:13 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:34:13 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:34:13 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:34:13 PM - INFO - Creating new RobustScaler +05/03/2018 07:34:13 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:34:13 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:34:13 PM - INFO - Training and test data transformed +05/03/2018 07:34:13 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:34:13 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:34:13 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:34:13 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:34:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:13 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:34:13 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:34:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:13 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:34:13 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:34:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:34:13 PM - DEBUG - Writing TrueType font. +05/03/2018 07:34:13 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:34:13 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:34:13 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:34:13 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:34:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:34:13 PM - DEBUG - Writing TrueType font. +05/03/2018 07:34:14 PM - INFO - Train model +05/03/2018 07:34:14 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:34:14 PM - INFO - KeyError +05/03/2018 07:34:14 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:34:14 PM - INFO - Compile model +05/03/2018 07:34:14 PM - INFO - No weights found, starting completely new model +05/03/2018 07:34:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:26 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:34:28 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:34:30 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:34:30 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:34:31 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:34:31 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:34:31 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:34:31 PM - INFO - Creating new RobustScaler +05/03/2018 07:34:31 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:34:31 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:34:31 PM - INFO - Training and test data transformed +05/03/2018 07:34:31 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:34:31 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:34:31 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:34:31 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:34:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:31 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:34:31 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:34:32 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:32 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:34:32 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:34:32 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:34:32 PM - DEBUG - Writing TrueType font. +05/03/2018 07:34:32 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:34:32 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:34:32 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:34:32 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:34:32 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:34:32 PM - DEBUG - Writing TrueType font. +05/03/2018 07:34:32 PM - INFO - Train model +05/03/2018 07:34:32 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:34:32 PM - INFO - KeyError +05/03/2018 07:34:32 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:34:32 PM - INFO - Compile model +05/03/2018 07:34:32 PM - INFO - No weights found, starting completely new model +05/03/2018 07:34:32 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:39 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:34:41 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:34:42 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:34:42 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:34:44 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:34:44 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:34:44 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:34:44 PM - INFO - Creating new RobustScaler +05/03/2018 07:34:44 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:34:44 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:34:44 PM - INFO - Training and test data transformed +05/03/2018 07:34:44 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:34:44 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:34:44 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:34:44 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:34:44 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:44 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:34:44 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:34:44 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:44 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:34:44 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:34:44 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:34:44 PM - DEBUG - Writing TrueType font. +05/03/2018 07:34:44 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:34:44 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:34:44 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:34:44 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:34:44 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:34:44 PM - DEBUG - Writing TrueType font. +05/03/2018 07:34:44 PM - INFO - Train model +05/03/2018 07:34:44 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:34:44 PM - INFO - KeyError +05/03/2018 07:34:44 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:34:44 PM - INFO - Compile model +05/03/2018 07:34:44 PM - INFO - No weights found, starting completely new model +05/03/2018 07:34:44 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:34:56 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:34:58 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:34:59 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:34:59 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:35:00 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:35:00 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:35:00 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:35:00 PM - INFO - Creating new RobustScaler +05/03/2018 07:35:00 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:35:00 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:35:00 PM - INFO - Training and test data transformed +05/03/2018 07:35:00 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:35:00 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:35:00 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:35:00 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:35:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:01 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:35:01 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:35:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:01 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:35:01 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:01 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:01 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:01 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:35:01 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:35:01 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:35:01 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:01 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:01 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:01 PM - INFO - Train model +05/03/2018 07:35:01 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:35:01 PM - INFO - KeyError +05/03/2018 07:35:01 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:35:01 PM - INFO - Compile model +05/03/2018 07:35:01 PM - INFO - No weights found, starting completely new model +05/03/2018 07:35:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:12 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:35:14 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:35:16 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:35:16 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:35:17 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:35:17 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:35:17 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:35:17 PM - INFO - Creating new RobustScaler +05/03/2018 07:35:17 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:35:17 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:35:17 PM - INFO - Training and test data transformed +05/03/2018 07:35:17 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:35:17 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:35:17 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:35:17 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:35:17 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:17 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:35:17 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:35:17 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:17 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:35:17 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:17 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:17 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:17 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:35:17 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:35:17 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:35:18 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:18 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:18 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:18 PM - INFO - Train model +05/03/2018 07:35:18 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:35:18 PM - INFO - KeyError +05/03/2018 07:35:18 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:35:18 PM - INFO - Compile model +05/03/2018 07:35:18 PM - INFO - No weights found, starting completely new model +05/03/2018 07:35:18 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:24 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:35:26 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:35:27 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:35:27 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:35:28 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:35:28 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:35:28 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:35:28 PM - INFO - Creating new RobustScaler +05/03/2018 07:35:28 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:35:28 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:35:28 PM - INFO - Training and test data transformed +05/03/2018 07:35:28 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:35:28 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:35:28 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:35:28 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:35:28 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:28 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:35:28 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:35:28 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:28 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:35:29 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:29 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:29 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:29 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:35:29 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:35:29 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:35:29 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:29 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:29 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:29 PM - INFO - Train model +05/03/2018 07:35:29 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:35:29 PM - INFO - KeyError +05/03/2018 07:35:29 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:35:29 PM - INFO - Compile model +05/03/2018 07:35:29 PM - INFO - No weights found, starting completely new model +05/03/2018 07:35:29 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:36 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:35:38 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:35:39 PM - INFO - Generation average: 96.85% +05/03/2018 07:35:39 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 07:35:39 PM - INFO - ***Doing generation 4 of 10*** +05/03/2018 07:35:39 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:35:39 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:35:40 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:35:40 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:35:40 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:35:40 PM - INFO - Creating new RobustScaler +05/03/2018 07:35:40 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:35:40 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:35:40 PM - INFO - Training and test data transformed +05/03/2018 07:35:40 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:35:40 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:35:40 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:35:40 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:35:40 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:40 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:35:40 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:35:40 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:40 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:35:40 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:40 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:40 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:40 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:35:40 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:35:40 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:35:41 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:41 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:41 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:41 PM - INFO - Train model +05/03/2018 07:35:41 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:35:41 PM - INFO - KeyError +05/03/2018 07:35:41 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:35:41 PM - INFO - Compile model +05/03/2018 07:35:41 PM - INFO - No weights found, starting completely new model +05/03/2018 07:35:41 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:48 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:35:50 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:35:51 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:35:51 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:35:52 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:35:52 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:35:52 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:35:52 PM - INFO - Creating new RobustScaler +05/03/2018 07:35:52 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:35:52 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:35:52 PM - INFO - Training and test data transformed +05/03/2018 07:35:52 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:35:52 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:35:52 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:35:52 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:35:52 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:52 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:35:52 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:35:53 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:35:53 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:35:53 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:53 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:53 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:53 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:35:53 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:35:53 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:35:53 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:35:53 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:35:53 PM - DEBUG - Writing TrueType font. +05/03/2018 07:35:53 PM - INFO - Train model +05/03/2018 07:35:53 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:35:53 PM - INFO - KeyError +05/03/2018 07:35:53 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:35:53 PM - INFO - Compile model +05/03/2018 07:35:53 PM - INFO - No weights found, starting completely new model +05/03/2018 07:35:53 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:36:03 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:36:06 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:36:07 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:36:07 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:36:09 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:36:09 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:36:09 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:36:09 PM - INFO - Creating new RobustScaler +05/03/2018 07:36:09 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:36:09 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:36:09 PM - INFO - Training and test data transformed +05/03/2018 07:36:09 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:36:09 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:36:09 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:36:09 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:36:09 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:36:09 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:36:09 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:36:09 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:36:09 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:36:09 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:36:09 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:36:09 PM - DEBUG - Writing TrueType font. +05/03/2018 07:36:09 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:36:09 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:36:09 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:36:09 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:36:09 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:36:09 PM - DEBUG - Writing TrueType font. +05/03/2018 07:36:09 PM - INFO - Train model +05/03/2018 07:36:09 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:36:09 PM - INFO - KeyError +05/03/2018 07:36:09 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:36:09 PM - INFO - Compile model +05/03/2018 07:36:09 PM - INFO - No weights found, starting completely new model +05/03/2018 07:36:09 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:36:49 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:36:55 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:36:59 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:36:59 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:37:00 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:37:00 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:37:00 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:37:00 PM - INFO - Creating new RobustScaler +05/03/2018 07:37:00 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:37:00 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:37:00 PM - INFO - Training and test data transformed +05/03/2018 07:37:00 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:37:00 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:37:00 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:37:00 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:37:00 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:37:00 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:37:00 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:37:00 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:37:00 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:37:00 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:37:00 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:37:00 PM - DEBUG - Writing TrueType font. +05/03/2018 07:37:00 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:37:00 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:37:00 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:37:00 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:37:00 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:37:00 PM - DEBUG - Writing TrueType font. +05/03/2018 07:37:01 PM - INFO - Train model +05/03/2018 07:37:01 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:37:01 PM - INFO - KeyError +05/03/2018 07:37:01 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:37:01 PM - INFO - Compile model +05/03/2018 07:37:01 PM - INFO - No weights found, starting completely new model +05/03/2018 07:37:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:37:51 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:37:57 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:38:01 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:38:01 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:38:02 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:38:02 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:38:02 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:38:02 PM - INFO - Creating new RobustScaler +05/03/2018 07:38:02 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:38:02 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:38:02 PM - INFO - Training and test data transformed +05/03/2018 07:38:02 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:38:02 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:38:02 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:38:02 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:38:03 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:38:03 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:38:03 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:38:03 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:38:03 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:38:03 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:38:03 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:38:03 PM - DEBUG - Writing TrueType font. +05/03/2018 07:38:03 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:38:03 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:38:03 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:38:03 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:38:03 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:38:03 PM - DEBUG - Writing TrueType font. +05/03/2018 07:38:03 PM - INFO - Train model +05/03/2018 07:38:03 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:38:03 PM - INFO - KeyError +05/03/2018 07:38:03 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:38:03 PM - INFO - Compile model +05/03/2018 07:38:03 PM - INFO - No weights found, starting completely new model +05/03/2018 07:38:03 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:38:11 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:38:14 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:38:15 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:38:15 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:38:16 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:38:16 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:38:16 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:38:16 PM - INFO - Creating new RobustScaler +05/03/2018 07:38:16 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:38:16 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:38:16 PM - INFO - Training and test data transformed +05/03/2018 07:38:17 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:38:17 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:38:17 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:38:17 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:38:17 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:38:17 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:38:17 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:38:17 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:38:17 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:38:17 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:38:17 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:38:17 PM - DEBUG - Writing TrueType font. +05/03/2018 07:38:17 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:38:17 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:38:17 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:38:17 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:38:17 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:38:17 PM - DEBUG - Writing TrueType font. +05/03/2018 07:38:17 PM - INFO - Train model +05/03/2018 07:38:17 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:38:17 PM - INFO - KeyError +05/03/2018 07:38:17 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:38:17 PM - INFO - Compile model +05/03/2018 07:38:17 PM - INFO - No weights found, starting completely new model +05/03/2018 07:38:17 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:38:25 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:38:28 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:38:29 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:38:29 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:38:31 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:38:31 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:38:31 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:38:31 PM - INFO - Creating new RobustScaler +05/03/2018 07:38:31 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:38:31 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:38:31 PM - INFO - Training and test data transformed +05/03/2018 07:38:31 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:38:31 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:38:31 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:38:31 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:38:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:38:31 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:38:31 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:38:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:38:31 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:38:31 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:38:31 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:38:31 PM - DEBUG - Writing TrueType font. +05/03/2018 07:38:31 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:38:31 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:38:31 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:38:31 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:38:31 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:38:31 PM - DEBUG - Writing TrueType font. +05/03/2018 07:38:31 PM - INFO - Train model +05/03/2018 07:38:31 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:38:31 PM - INFO - KeyError +05/03/2018 07:38:31 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:38:31 PM - INFO - Compile model +05/03/2018 07:38:31 PM - INFO - No weights found, starting completely new model +05/03/2018 07:38:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:40:43 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:40:52 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:40:57 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:40:57 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:40:58 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:40:58 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:40:58 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:40:58 PM - INFO - Creating new RobustScaler +05/03/2018 07:40:58 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:40:58 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:40:58 PM - INFO - Training and test data transformed +05/03/2018 07:40:58 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:40:58 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:40:58 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:40:58 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:40:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:40:59 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:40:59 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:40:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:40:59 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:40:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:40:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:40:59 PM - DEBUG - Writing TrueType font. +05/03/2018 07:40:59 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:40:59 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:40:59 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:40:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:40:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:40:59 PM - DEBUG - Writing TrueType font. +05/03/2018 07:40:59 PM - INFO - Train model +05/03/2018 07:40:59 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:40:59 PM - INFO - KeyError +05/03/2018 07:40:59 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:40:59 PM - INFO - Compile model +05/03/2018 07:40:59 PM - INFO - No weights found, starting completely new model +05/03/2018 07:40:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:41:07 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:41:09 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:41:10 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:41:10 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:41:12 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:41:12 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:41:12 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:41:12 PM - INFO - Creating new RobustScaler +05/03/2018 07:41:12 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:41:12 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:41:12 PM - INFO - Training and test data transformed +05/03/2018 07:41:12 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:41:12 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:41:12 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:41:12 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:41:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:41:12 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:41:12 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:41:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:41:12 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:41:12 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:41:12 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:41:12 PM - DEBUG - Writing TrueType font. +05/03/2018 07:41:12 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:41:12 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:41:12 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:41:12 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:41:12 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:41:12 PM - DEBUG - Writing TrueType font. +05/03/2018 07:41:12 PM - INFO - Train model +05/03/2018 07:41:12 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:41:12 PM - INFO - KeyError +05/03/2018 07:41:12 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:41:12 PM - INFO - Compile model +05/03/2018 07:41:12 PM - INFO - No weights found, starting completely new model +05/03/2018 07:41:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:41:38 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:41:42 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:41:44 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:41:44 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:41:46 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:41:46 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:41:46 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:41:46 PM - INFO - Creating new RobustScaler +05/03/2018 07:41:46 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:41:46 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:41:46 PM - INFO - Training and test data transformed +05/03/2018 07:41:46 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:41:46 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:41:46 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:41:46 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:41:46 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:41:46 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:41:46 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:41:46 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:41:46 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:41:46 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:41:46 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:41:46 PM - DEBUG - Writing TrueType font. +05/03/2018 07:41:46 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:41:46 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:41:46 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:41:46 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:41:46 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:41:46 PM - DEBUG - Writing TrueType font. +05/03/2018 07:41:46 PM - INFO - Train model +05/03/2018 07:41:46 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:41:46 PM - INFO - KeyError +05/03/2018 07:41:46 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:41:46 PM - INFO - Compile model +05/03/2018 07:41:46 PM - INFO - No weights found, starting completely new model +05/03/2018 07:41:46 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:41:53 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:41:56 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:41:57 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:41:57 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:41:58 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:41:58 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:41:58 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:41:58 PM - INFO - Creating new RobustScaler +05/03/2018 07:41:58 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:41:58 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:41:58 PM - INFO - Training and test data transformed +05/03/2018 07:41:58 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:41:58 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:41:58 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:41:58 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:41:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:41:59 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:41:59 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:41:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:41:59 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:41:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:41:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:41:59 PM - DEBUG - Writing TrueType font. +05/03/2018 07:41:59 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:41:59 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:41:59 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:41:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:41:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:41:59 PM - DEBUG - Writing TrueType font. +05/03/2018 07:41:59 PM - INFO - Train model +05/03/2018 07:41:59 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:41:59 PM - INFO - KeyError +05/03/2018 07:41:59 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:41:59 PM - INFO - Compile model +05/03/2018 07:41:59 PM - INFO - No weights found, starting completely new model +05/03/2018 07:41:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:42:06 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:42:09 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:42:10 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:42:10 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:42:11 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:42:11 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:42:11 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:42:11 PM - INFO - Creating new RobustScaler +05/03/2018 07:42:11 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:42:11 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:42:11 PM - INFO - Training and test data transformed +05/03/2018 07:42:11 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:42:11 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:42:11 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:42:11 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:42:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:42:12 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:42:12 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:42:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:42:12 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:42:12 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:42:12 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:42:12 PM - DEBUG - Writing TrueType font. +05/03/2018 07:42:12 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:42:12 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:42:12 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:42:12 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:42:12 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:42:12 PM - DEBUG - Writing TrueType font. +05/03/2018 07:42:12 PM - INFO - Train model +05/03/2018 07:42:12 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:42:12 PM - INFO - KeyError +05/03/2018 07:42:12 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:42:12 PM - INFO - Compile model +05/03/2018 07:42:12 PM - INFO - No weights found, starting completely new model +05/03/2018 07:42:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:44:32 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:44:44 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:44:50 PM - INFO - Generation average: 96.95% +05/03/2018 07:44:50 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 07:44:50 PM - INFO - ***Doing generation 5 of 10*** +05/03/2018 07:44:50 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:44:50 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:44:51 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:44:51 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:44:51 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:44:51 PM - INFO - Creating new RobustScaler +05/03/2018 07:44:51 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:44:51 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:44:51 PM - INFO - Training and test data transformed +05/03/2018 07:44:51 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:44:51 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:44:51 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:44:51 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:44:51 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:44:51 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:44:51 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:44:51 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:44:51 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:44:51 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:44:51 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:44:51 PM - DEBUG - Writing TrueType font. +05/03/2018 07:44:52 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:44:52 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:44:52 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:44:52 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:44:52 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:44:52 PM - DEBUG - Writing TrueType font. +05/03/2018 07:44:52 PM - INFO - Train model +05/03/2018 07:44:52 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:44:52 PM - INFO - KeyError +05/03/2018 07:44:52 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:44:52 PM - INFO - Compile model +05/03/2018 07:44:52 PM - INFO - No weights found, starting completely new model +05/03/2018 07:44:52 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:44:59 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:45:02 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:45:03 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:45:03 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:45:05 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:45:05 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:45:05 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:45:05 PM - INFO - Creating new RobustScaler +05/03/2018 07:45:05 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:45:05 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:45:05 PM - INFO - Training and test data transformed +05/03/2018 07:45:05 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:45:05 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:45:05 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:45:05 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:45:05 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:05 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:45:05 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:45:05 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:05 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:45:05 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:05 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:05 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:05 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:45:05 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:45:05 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:45:05 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:05 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:05 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:05 PM - INFO - Train model +05/03/2018 07:45:05 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:45:05 PM - INFO - KeyError +05/03/2018 07:45:05 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:45:05 PM - INFO - Compile model +05/03/2018 07:45:05 PM - INFO - No weights found, starting completely new model +05/03/2018 07:45:05 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:13 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:45:15 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:45:17 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:45:17 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:45:18 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:45:18 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:45:18 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:45:18 PM - INFO - Creating new RobustScaler +05/03/2018 07:45:18 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:45:18 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:45:18 PM - INFO - Training and test data transformed +05/03/2018 07:45:18 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:45:18 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:45:18 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:45:18 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:45:18 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:18 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:45:18 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:45:18 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:18 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:45:18 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:18 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:18 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:18 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:45:18 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:45:18 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:45:18 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:18 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:18 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:18 PM - INFO - Train model +05/03/2018 07:45:18 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:45:18 PM - INFO - KeyError +05/03/2018 07:45:18 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 07:45:18 PM - INFO - Compile model +05/03/2018 07:45:18 PM - INFO - No weights found, starting completely new model +05/03/2018 07:45:18 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:24 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:45:27 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:45:28 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:45:28 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:45:30 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:45:30 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:45:30 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:45:30 PM - INFO - Creating new RobustScaler +05/03/2018 07:45:30 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:45:30 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:45:30 PM - INFO - Training and test data transformed +05/03/2018 07:45:30 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:45:30 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:45:30 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:45:30 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:45:30 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:30 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:45:30 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:45:30 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:30 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:45:30 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:30 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:30 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:30 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:45:30 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:45:30 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:45:30 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:30 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:30 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:30 PM - INFO - Train model +05/03/2018 07:45:30 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:45:30 PM - INFO - KeyError +05/03/2018 07:45:30 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:45:30 PM - INFO - Compile model +05/03/2018 07:45:30 PM - INFO - No weights found, starting completely new model +05/03/2018 07:45:30 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:39 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:45:42 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:45:44 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:45:44 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:45:45 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:45:45 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:45:45 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:45:45 PM - INFO - Creating new RobustScaler +05/03/2018 07:45:45 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:45:45 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:45:45 PM - INFO - Training and test data transformed +05/03/2018 07:45:45 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:45:45 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:45:45 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:45:45 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:45:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:45 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:45:45 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:45:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:45 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:45:45 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:45 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:45 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:45 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:45:45 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:45:45 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:45:45 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:45 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:45 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:45 PM - INFO - Train model +05/03/2018 07:45:45 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:45:45 PM - INFO - KeyError +05/03/2018 07:45:45 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:45:45 PM - INFO - Compile model +05/03/2018 07:45:45 PM - INFO - No weights found, starting completely new model +05/03/2018 07:45:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:53 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:45:56 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:45:57 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:45:57 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:45:58 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:45:58 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:45:58 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:45:58 PM - INFO - Creating new RobustScaler +05/03/2018 07:45:58 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:45:58 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:45:58 PM - INFO - Training and test data transformed +05/03/2018 07:45:58 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:45:58 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:45:58 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:45:58 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:45:58 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:58 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:45:58 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:45:58 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:45:58 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:45:58 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:58 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:58 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:59 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:45:59 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:45:59 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:45:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:45:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:45:59 PM - DEBUG - Writing TrueType font. +05/03/2018 07:45:59 PM - INFO - Train model +05/03/2018 07:45:59 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:45:59 PM - INFO - KeyError +05/03/2018 07:45:59 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:45:59 PM - INFO - Compile model +05/03/2018 07:45:59 PM - INFO - No weights found, starting completely new model +05/03/2018 07:45:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:46:07 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:46:10 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:46:11 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:46:11 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:46:12 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:46:12 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:46:12 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:46:12 PM - INFO - Creating new RobustScaler +05/03/2018 07:46:12 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:46:12 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:46:12 PM - INFO - Training and test data transformed +05/03/2018 07:46:12 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:46:12 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:46:12 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:46:12 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:46:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:46:12 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:46:12 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:46:12 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:46:12 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:46:12 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:46:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:46:13 PM - DEBUG - Writing TrueType font. +05/03/2018 07:46:13 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:46:13 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:46:13 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:46:13 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:46:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:46:13 PM - DEBUG - Writing TrueType font. +05/03/2018 07:46:13 PM - INFO - Train model +05/03/2018 07:46:13 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:46:13 PM - INFO - KeyError +05/03/2018 07:46:13 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:46:13 PM - INFO - Compile model +05/03/2018 07:46:13 PM - INFO - No weights found, starting completely new model +05/03/2018 07:46:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:46:50 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:46:56 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:46:59 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:46:59 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:47:01 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:47:01 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:47:01 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:47:01 PM - INFO - Creating new RobustScaler +05/03/2018 07:47:01 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:47:01 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:47:01 PM - INFO - Training and test data transformed +05/03/2018 07:47:01 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:47:01 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:47:01 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:47:01 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:47:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:47:01 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:47:01 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:47:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:47:01 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:47:01 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:47:01 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:47:01 PM - DEBUG - Writing TrueType font. +05/03/2018 07:47:01 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:47:01 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:47:01 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:47:01 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:47:01 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:47:01 PM - DEBUG - Writing TrueType font. +05/03/2018 07:47:01 PM - INFO - Train model +05/03/2018 07:47:01 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:47:01 PM - INFO - KeyError +05/03/2018 07:47:01 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:47:01 PM - INFO - Compile model +05/03/2018 07:47:01 PM - INFO - No weights found, starting completely new model +05/03/2018 07:47:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:47:10 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:47:13 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:47:14 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:47:14 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:47:16 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:47:16 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:47:16 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:47:16 PM - INFO - Creating new RobustScaler +05/03/2018 07:47:16 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:47:16 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:47:16 PM - INFO - Training and test data transformed +05/03/2018 07:47:16 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:47:16 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:47:16 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:47:16 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:47:16 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:47:16 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:47:16 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:47:16 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:47:16 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:47:16 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:47:16 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:47:16 PM - DEBUG - Writing TrueType font. +05/03/2018 07:47:16 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:47:16 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:47:16 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:47:16 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:47:16 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:47:16 PM - DEBUG - Writing TrueType font. +05/03/2018 07:47:16 PM - INFO - Train model +05/03/2018 07:47:16 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:47:16 PM - INFO - KeyError +05/03/2018 07:47:16 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:47:16 PM - INFO - Compile model +05/03/2018 07:47:16 PM - INFO - No weights found, starting completely new model +05/03/2018 07:47:16 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:47:27 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:47:30 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:47:32 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:47:32 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:47:33 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:47:33 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:47:33 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:47:33 PM - INFO - Creating new RobustScaler +05/03/2018 07:47:33 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:47:33 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:47:33 PM - INFO - Training and test data transformed +05/03/2018 07:47:33 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:47:33 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:47:33 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:47:33 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:47:33 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:47:33 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:47:33 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:47:33 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:47:33 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:47:33 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:47:33 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:47:33 PM - DEBUG - Writing TrueType font. +05/03/2018 07:47:33 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:47:33 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:47:33 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:47:33 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:47:33 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:47:33 PM - DEBUG - Writing TrueType font. +05/03/2018 07:47:33 PM - INFO - Train model +05/03/2018 07:47:34 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:47:34 PM - INFO - KeyError +05/03/2018 07:47:34 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:47:34 PM - INFO - Compile model +05/03/2018 07:47:34 PM - INFO - No weights found, starting completely new model +05/03/2018 07:47:34 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:48:53 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:49:04 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:49:09 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:49:09 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:49:10 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:49:10 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:49:10 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:49:10 PM - INFO - Creating new RobustScaler +05/03/2018 07:49:10 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:49:10 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:49:10 PM - INFO - Training and test data transformed +05/03/2018 07:49:10 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:49:10 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:49:10 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:49:10 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:49:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:10 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:49:10 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:49:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:10 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:49:10 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:49:10 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:49:10 PM - DEBUG - Writing TrueType font. +05/03/2018 07:49:11 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:49:11 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:49:11 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:49:11 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:49:11 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:49:11 PM - DEBUG - Writing TrueType font. +05/03/2018 07:49:11 PM - INFO - Train model +05/03/2018 07:49:11 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:49:11 PM - INFO - KeyError +05/03/2018 07:49:11 PM - INFO - Using adam(**{}) as Optimizer +05/03/2018 07:49:11 PM - INFO - Compile model +05/03/2018 07:49:11 PM - INFO - No weights found, starting completely new model +05/03/2018 07:49:11 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:21 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:49:24 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:49:25 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:49:25 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:49:26 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:49:26 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:49:26 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:49:26 PM - INFO - Creating new RobustScaler +05/03/2018 07:49:26 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:49:26 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:49:26 PM - INFO - Training and test data transformed +05/03/2018 07:49:26 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:49:26 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:49:26 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:49:26 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:49:26 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:26 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:49:26 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:49:26 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:26 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:49:26 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:49:26 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:49:26 PM - DEBUG - Writing TrueType font. +05/03/2018 07:49:27 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:49:27 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:49:27 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:49:27 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:49:27 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:49:27 PM - DEBUG - Writing TrueType font. +05/03/2018 07:49:27 PM - INFO - Train model +05/03/2018 07:49:27 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:49:27 PM - INFO - KeyError +05/03/2018 07:49:27 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:49:27 PM - INFO - Compile model +05/03/2018 07:49:27 PM - INFO - No weights found, starting completely new model +05/03/2018 07:49:27 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:36 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:49:39 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:49:41 PM - INFO - Generation average: 97.03% +05/03/2018 07:49:41 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 07:49:41 PM - INFO - ***Doing generation 6 of 10*** +05/03/2018 07:49:41 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:49:41 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:49:42 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:49:42 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:49:42 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:49:42 PM - INFO - Creating new RobustScaler +05/03/2018 07:49:42 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:49:42 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:49:42 PM - INFO - Training and test data transformed +05/03/2018 07:49:42 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:49:42 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:49:42 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:49:42 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:49:42 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:42 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:49:42 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:49:42 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:42 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:49:42 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:49:42 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:49:42 PM - DEBUG - Writing TrueType font. +05/03/2018 07:49:42 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:49:42 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:49:42 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:49:42 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:49:42 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:49:42 PM - DEBUG - Writing TrueType font. +05/03/2018 07:49:42 PM - INFO - Train model +05/03/2018 07:49:43 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:49:43 PM - INFO - KeyError +05/03/2018 07:49:43 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:49:43 PM - INFO - Compile model +05/03/2018 07:49:43 PM - INFO - No weights found, starting completely new model +05/03/2018 07:49:43 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:51 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:49:54 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:49:55 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:49:55 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:49:56 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:49:56 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:49:56 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:49:56 PM - INFO - Creating new RobustScaler +05/03/2018 07:49:56 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:49:56 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:49:56 PM - INFO - Training and test data transformed +05/03/2018 07:49:56 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:49:56 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:49:56 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:49:56 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:49:56 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:56 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:49:56 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:49:57 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:49:57 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:49:57 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:49:57 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:49:57 PM - DEBUG - Writing TrueType font. +05/03/2018 07:49:57 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:49:57 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:49:57 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:49:57 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:49:57 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:49:57 PM - DEBUG - Writing TrueType font. +05/03/2018 07:49:57 PM - INFO - Train model +05/03/2018 07:49:57 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:49:57 PM - INFO - KeyError +05/03/2018 07:49:57 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 07:49:57 PM - INFO - Compile model +05/03/2018 07:49:57 PM - INFO - No weights found, starting completely new model +05/03/2018 07:49:57 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:50:04 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:50:07 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:50:08 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:50:08 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:50:10 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:50:10 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:50:10 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:50:10 PM - INFO - Creating new RobustScaler +05/03/2018 07:50:10 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:50:10 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:50:10 PM - INFO - Training and test data transformed +05/03/2018 07:50:10 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:50:10 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:50:10 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:50:10 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:50:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:50:10 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:50:10 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:50:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:50:10 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:50:10 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:50:10 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:50:10 PM - DEBUG - Writing TrueType font. +05/03/2018 07:50:10 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:50:10 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:50:10 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:50:10 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:50:10 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:50:10 PM - DEBUG - Writing TrueType font. +05/03/2018 07:50:10 PM - INFO - Train model +05/03/2018 07:50:10 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:50:10 PM - INFO - KeyError +05/03/2018 07:50:10 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:50:10 PM - INFO - Compile model +05/03/2018 07:50:10 PM - INFO - No weights found, starting completely new model +05/03/2018 07:50:10 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:50:17 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:50:20 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:50:21 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:50:21 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:50:22 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:50:22 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:50:22 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:50:22 PM - INFO - Creating new RobustScaler +05/03/2018 07:50:22 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:50:22 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:50:22 PM - INFO - Training and test data transformed +05/03/2018 07:50:23 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:50:23 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:50:23 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:50:23 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:50:23 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:50:23 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:50:23 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:50:23 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:50:23 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:50:23 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:50:23 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:50:23 PM - DEBUG - Writing TrueType font. +05/03/2018 07:50:23 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:50:23 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:50:23 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:50:23 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:50:23 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:50:23 PM - DEBUG - Writing TrueType font. +05/03/2018 07:50:23 PM - INFO - Train model +05/03/2018 07:50:23 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:50:23 PM - INFO - KeyError +05/03/2018 07:50:23 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:50:23 PM - INFO - Compile model +05/03/2018 07:50:23 PM - INFO - No weights found, starting completely new model +05/03/2018 07:50:23 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:51:28 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:51:38 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:51:44 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:51:44 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:51:45 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:51:45 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:51:45 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:51:45 PM - INFO - Creating new RobustScaler +05/03/2018 07:51:45 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:51:45 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:51:45 PM - INFO - Training and test data transformed +05/03/2018 07:51:45 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:51:45 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:51:45 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:51:45 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:51:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:51:45 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:51:45 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:51:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:51:45 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:51:45 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:51:45 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:51:45 PM - DEBUG - Writing TrueType font. +05/03/2018 07:51:45 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:51:45 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:51:45 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:51:45 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:51:45 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:51:45 PM - DEBUG - Writing TrueType font. +05/03/2018 07:51:45 PM - INFO - Train model +05/03/2018 07:51:45 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:51:45 PM - INFO - KeyError +05/03/2018 07:51:45 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 07:51:45 PM - INFO - Compile model +05/03/2018 07:51:45 PM - INFO - No weights found, starting completely new model +05/03/2018 07:51:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:51:53 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:51:56 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:51:57 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:51:57 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:51:58 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:51:58 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:51:58 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:51:58 PM - INFO - Creating new RobustScaler +05/03/2018 07:51:58 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:51:58 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:51:58 PM - INFO - Training and test data transformed +05/03/2018 07:51:58 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:51:58 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:51:58 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:51:58 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:51:58 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:51:58 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:51:58 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:51:58 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:51:58 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:51:58 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:51:58 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:51:58 PM - DEBUG - Writing TrueType font. +05/03/2018 07:51:59 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:51:59 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:51:59 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:51:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:51:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:51:59 PM - DEBUG - Writing TrueType font. +05/03/2018 07:51:59 PM - INFO - Train model +05/03/2018 07:51:59 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:51:59 PM - INFO - KeyError +05/03/2018 07:51:59 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 07:51:59 PM - INFO - Compile model +05/03/2018 07:51:59 PM - INFO - No weights found, starting completely new model +05/03/2018 07:51:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:52:07 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:52:10 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:52:11 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:52:11 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:52:13 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:52:13 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:52:13 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:52:13 PM - INFO - Creating new RobustScaler +05/03/2018 07:52:13 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:52:13 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:52:13 PM - INFO - Training and test data transformed +05/03/2018 07:52:13 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:52:13 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:52:13 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:52:13 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:52:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:52:13 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:52:13 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:52:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:52:13 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:52:13 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:52:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:52:13 PM - DEBUG - Writing TrueType font. +05/03/2018 07:52:13 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:52:13 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:52:13 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:52:13 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:52:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:52:13 PM - DEBUG - Writing TrueType font. +05/03/2018 07:52:13 PM - INFO - Train model +05/03/2018 07:52:13 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:52:13 PM - INFO - KeyError +05/03/2018 07:52:13 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:52:13 PM - INFO - Compile model +05/03/2018 07:52:13 PM - INFO - No weights found, starting completely new model +05/03/2018 07:52:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:53:46 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:53:56 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:54:01 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:54:01 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:54:02 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:54:02 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:54:02 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:54:02 PM - INFO - Creating new RobustScaler +05/03/2018 07:54:02 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:54:02 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:54:02 PM - INFO - Training and test data transformed +05/03/2018 07:54:02 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:54:02 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:54:02 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:54:02 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:54:02 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:54:02 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:54:02 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:54:02 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:54:02 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:54:03 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:54:03 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:54:03 PM - DEBUG - Writing TrueType font. +05/03/2018 07:54:03 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:54:03 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:54:03 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:54:03 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:54:03 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:54:03 PM - DEBUG - Writing TrueType font. +05/03/2018 07:54:03 PM - INFO - Train model +05/03/2018 07:54:03 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:54:03 PM - INFO - KeyError +05/03/2018 07:54:03 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:54:03 PM - INFO - Compile model +05/03/2018 07:54:03 PM - INFO - No weights found, starting completely new model +05/03/2018 07:54:03 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:55:57 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:56:07 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:56:12 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:56:12 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:56:14 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:56:14 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:56:14 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:56:14 PM - INFO - Creating new RobustScaler +05/03/2018 07:56:14 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:56:14 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:56:14 PM - INFO - Training and test data transformed +05/03/2018 07:56:14 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:56:14 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:56:14 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:56:14 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:56:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:56:14 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:56:14 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:56:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:56:14 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:56:14 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:56:14 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:56:14 PM - DEBUG - Writing TrueType font. +05/03/2018 07:56:14 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:56:14 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:56:14 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:56:14 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:56:14 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:56:14 PM - DEBUG - Writing TrueType font. +05/03/2018 07:56:14 PM - INFO - Train model +05/03/2018 07:56:14 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:56:14 PM - INFO - KeyError +05/03/2018 07:56:14 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:56:14 PM - INFO - Compile model +05/03/2018 07:56:14 PM - INFO - No weights found, starting completely new model +05/03/2018 07:56:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:56:28 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:56:32 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:56:34 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:56:34 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:56:35 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:56:35 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:56:35 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:56:35 PM - INFO - Creating new RobustScaler +05/03/2018 07:56:35 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:56:35 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:56:35 PM - INFO - Training and test data transformed +05/03/2018 07:56:35 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:56:35 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:56:35 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:56:35 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:56:35 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:56:35 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:56:35 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:56:35 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:56:35 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:56:35 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:56:35 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:56:35 PM - DEBUG - Writing TrueType font. +05/03/2018 07:56:35 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:56:35 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:56:35 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:56:35 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:56:35 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:56:35 PM - DEBUG - Writing TrueType font. +05/03/2018 07:56:35 PM - INFO - Train model +05/03/2018 07:56:35 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:56:35 PM - INFO - KeyError +05/03/2018 07:56:35 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:56:35 PM - INFO - Compile model +05/03/2018 07:56:35 PM - INFO - No weights found, starting completely new model +05/03/2018 07:56:35 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:57:30 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:57:41 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:57:46 PM - INFO - Generation average: 96.79% +05/03/2018 07:57:46 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 07:57:46 PM - INFO - ***Doing generation 7 of 10*** +05/03/2018 07:57:46 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:57:46 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:57:48 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:57:48 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:57:48 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:57:48 PM - INFO - Creating new RobustScaler +05/03/2018 07:57:48 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:57:48 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:57:48 PM - INFO - Training and test data transformed +05/03/2018 07:57:48 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:57:48 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:57:48 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:57:48 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:57:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:57:48 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:57:48 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:57:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:57:48 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:57:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:57:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:57:48 PM - DEBUG - Writing TrueType font. +05/03/2018 07:57:48 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:57:48 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:57:48 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:57:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:57:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:57:48 PM - DEBUG - Writing TrueType font. +05/03/2018 07:57:48 PM - INFO - Train model +05/03/2018 07:57:48 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:57:48 PM - INFO - KeyError +05/03/2018 07:57:48 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:57:48 PM - INFO - Compile model +05/03/2018 07:57:48 PM - INFO - No weights found, starting completely new model +05/03/2018 07:57:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:58:42 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:58:53 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:58:59 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:58:59 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:59:00 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:59:00 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:59:00 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:59:00 PM - INFO - Creating new RobustScaler +05/03/2018 07:59:00 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:59:00 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:59:00 PM - INFO - Training and test data transformed +05/03/2018 07:59:00 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:59:00 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:59:00 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:59:00 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:59:00 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:00 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:59:00 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:59:00 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:00 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:59:00 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:59:00 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:59:00 PM - DEBUG - Writing TrueType font. +05/03/2018 07:59:00 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:59:00 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:59:00 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:59:00 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:59:00 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:59:00 PM - DEBUG - Writing TrueType font. +05/03/2018 07:59:00 PM - INFO - Train model +05/03/2018 07:59:00 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:59:00 PM - INFO - KeyError +05/03/2018 07:59:01 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 07:59:01 PM - INFO - Compile model +05/03/2018 07:59:01 PM - INFO - No weights found, starting completely new model +05/03/2018 07:59:01 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:10 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:59:13 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:59:14 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:59:14 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:59:16 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:59:16 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:59:16 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:59:16 PM - INFO - Creating new RobustScaler +05/03/2018 07:59:16 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:59:16 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:59:16 PM - INFO - Training and test data transformed +05/03/2018 07:59:16 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:59:16 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:59:16 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:59:16 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:59:16 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:16 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:59:16 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:59:16 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:16 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:59:16 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:59:16 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:59:16 PM - DEBUG - Writing TrueType font. +05/03/2018 07:59:16 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:59:16 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:59:16 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:59:16 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:59:16 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:59:16 PM - DEBUG - Writing TrueType font. +05/03/2018 07:59:16 PM - INFO - Train model +05/03/2018 07:59:16 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:59:16 PM - INFO - KeyError +05/03/2018 07:59:16 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:59:16 PM - INFO - Compile model +05/03/2018 07:59:16 PM - INFO - No weights found, starting completely new model +05/03/2018 07:59:16 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:25 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:59:28 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:59:30 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:59:30 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:59:31 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:59:31 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:59:31 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:59:31 PM - INFO - Creating new RobustScaler +05/03/2018 07:59:31 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:59:31 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:59:31 PM - INFO - Training and test data transformed +05/03/2018 07:59:31 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:59:31 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:59:31 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:59:31 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:59:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:31 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:59:31 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:59:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:31 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:59:31 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:59:31 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:59:31 PM - DEBUG - Writing TrueType font. +05/03/2018 07:59:31 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:59:31 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:59:31 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:59:31 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:59:31 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:59:31 PM - DEBUG - Writing TrueType font. +05/03/2018 07:59:31 PM - INFO - Train model +05/03/2018 07:59:31 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:59:31 PM - INFO - KeyError +05/03/2018 07:59:31 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 07:59:31 PM - INFO - Compile model +05/03/2018 07:59:31 PM - INFO - No weights found, starting completely new model +05/03/2018 07:59:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:39 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:59:42 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:59:44 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:59:44 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 07:59:45 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 07:59:45 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 07:59:45 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 07:59:45 PM - INFO - Creating new RobustScaler +05/03/2018 07:59:45 PM - INFO - Fitting RobustScaler to training data +05/03/2018 07:59:45 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 07:59:45 PM - INFO - Training and test data transformed +05/03/2018 07:59:45 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 07:59:45 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 07:59:45 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 07:59:45 PM - DEBUG - Calculating background weights for plotting +05/03/2018 07:59:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:45 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 07:59:45 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 07:59:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:45 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 07:59:45 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:59:45 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:59:45 PM - DEBUG - Writing TrueType font. +05/03/2018 07:59:45 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 07:59:45 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 07:59:45 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 07:59:45 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 07:59:45 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 07:59:45 PM - DEBUG - Writing TrueType font. +05/03/2018 07:59:45 PM - INFO - Train model +05/03/2018 07:59:45 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 07:59:45 PM - INFO - KeyError +05/03/2018 07:59:45 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 07:59:45 PM - INFO - Compile model +05/03/2018 07:59:45 PM - INFO - No weights found, starting completely new model +05/03/2018 07:59:45 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 07:59:54 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 07:59:57 PM - INFO - Get test loss and metrics of the model +05/03/2018 07:59:59 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 07:59:59 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:00:00 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:00:00 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:00:00 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:00:00 PM - INFO - Creating new RobustScaler +05/03/2018 08:00:00 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:00:00 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:00:00 PM - INFO - Training and test data transformed +05/03/2018 08:00:00 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:00:00 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:00:00 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:00:00 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:00:00 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:00 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:00:00 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:00:00 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:00 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:00:00 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:00:00 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:00:00 PM - DEBUG - Writing TrueType font. +05/03/2018 08:00:00 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:00:00 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:00:00 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:00:00 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:00:00 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:00:00 PM - DEBUG - Writing TrueType font. +05/03/2018 08:00:00 PM - INFO - Train model +05/03/2018 08:00:00 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:00:00 PM - INFO - KeyError +05/03/2018 08:00:00 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:00:00 PM - INFO - Compile model +05/03/2018 08:00:00 PM - INFO - No weights found, starting completely new model +05/03/2018 08:00:00 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:09 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:00:12 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:00:14 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:00:14 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:00:15 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:00:15 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:00:15 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:00:15 PM - INFO - Creating new RobustScaler +05/03/2018 08:00:15 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:00:15 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:00:15 PM - INFO - Training and test data transformed +05/03/2018 08:00:15 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:00:15 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:00:15 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:00:15 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:00:15 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:15 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:00:15 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:00:15 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:15 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:00:15 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:00:16 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:00:16 PM - DEBUG - Writing TrueType font. +05/03/2018 08:00:16 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:00:16 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:00:16 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:00:16 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:00:16 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:00:16 PM - DEBUG - Writing TrueType font. +05/03/2018 08:00:16 PM - INFO - Train model +05/03/2018 08:00:16 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:00:16 PM - INFO - KeyError +05/03/2018 08:00:16 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:00:16 PM - INFO - Compile model +05/03/2018 08:00:16 PM - INFO - No weights found, starting completely new model +05/03/2018 08:00:16 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:25 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:00:29 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:00:30 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:00:30 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:00:31 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:00:31 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:00:31 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:00:31 PM - INFO - Creating new RobustScaler +05/03/2018 08:00:31 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:00:31 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:00:31 PM - INFO - Training and test data transformed +05/03/2018 08:00:31 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:00:31 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:00:31 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:00:31 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:00:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:31 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:00:31 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:00:32 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:32 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:00:32 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:00:32 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:00:32 PM - DEBUG - Writing TrueType font. +05/03/2018 08:00:32 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:00:32 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:00:32 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:00:32 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:00:32 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:00:32 PM - DEBUG - Writing TrueType font. +05/03/2018 08:00:32 PM - INFO - Train model +05/03/2018 08:00:32 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:00:32 PM - INFO - KeyError +05/03/2018 08:00:32 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:00:32 PM - INFO - Compile model +05/03/2018 08:00:32 PM - INFO - No weights found, starting completely new model +05/03/2018 08:00:32 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:41 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:00:45 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:00:46 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:00:46 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:00:48 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:00:48 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:00:48 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:00:48 PM - INFO - Creating new RobustScaler +05/03/2018 08:00:48 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:00:48 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:00:48 PM - INFO - Training and test data transformed +05/03/2018 08:00:48 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:00:48 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:00:48 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:00:48 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:00:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:48 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:00:48 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:00:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:00:48 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:00:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:00:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:00:48 PM - DEBUG - Writing TrueType font. +05/03/2018 08:00:48 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:00:48 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:00:48 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:00:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:00:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:00:48 PM - DEBUG - Writing TrueType font. +05/03/2018 08:00:48 PM - INFO - Train model +05/03/2018 08:00:48 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:00:48 PM - INFO - KeyError +05/03/2018 08:00:48 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:00:48 PM - INFO - Compile model +05/03/2018 08:00:48 PM - INFO - No weights found, starting completely new model +05/03/2018 08:00:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:06 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:01:11 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:01:13 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:01:13 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:01:14 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:01:14 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:01:14 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:01:14 PM - INFO - Creating new RobustScaler +05/03/2018 08:01:14 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:01:14 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:01:14 PM - INFO - Training and test data transformed +05/03/2018 08:01:14 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:01:14 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:01:14 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:01:14 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:01:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:14 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:01:14 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:01:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:14 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:01:14 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:01:14 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:01:14 PM - DEBUG - Writing TrueType font. +05/03/2018 08:01:14 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:01:14 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:01:14 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:01:14 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:01:14 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:01:14 PM - DEBUG - Writing TrueType font. +05/03/2018 08:01:14 PM - INFO - Train model +05/03/2018 08:01:14 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:01:14 PM - INFO - KeyError +05/03/2018 08:01:15 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 08:01:15 PM - INFO - Compile model +05/03/2018 08:01:15 PM - INFO - No weights found, starting completely new model +05/03/2018 08:01:15 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:24 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:01:28 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:01:30 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:01:30 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:01:31 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:01:31 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:01:31 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:01:31 PM - INFO - Creating new RobustScaler +05/03/2018 08:01:31 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:01:31 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:01:31 PM - INFO - Training and test data transformed +05/03/2018 08:01:31 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:01:31 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:01:31 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:01:31 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:01:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:31 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:01:31 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:01:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:31 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:01:31 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:01:31 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:01:31 PM - DEBUG - Writing TrueType font. +05/03/2018 08:01:31 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:01:31 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:01:31 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:01:32 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:01:32 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:01:32 PM - DEBUG - Writing TrueType font. +05/03/2018 08:01:32 PM - INFO - Train model +05/03/2018 08:01:32 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:01:32 PM - INFO - KeyError +05/03/2018 08:01:32 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:01:32 PM - INFO - Compile model +05/03/2018 08:01:32 PM - INFO - No weights found, starting completely new model +05/03/2018 08:01:32 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:41 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:01:45 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:01:46 PM - INFO - Generation average: 97.01% +05/03/2018 08:01:46 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 08:01:46 PM - INFO - ***Doing generation 8 of 10*** +05/03/2018 08:01:46 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:01:46 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:01:48 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:01:48 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:01:48 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:01:48 PM - INFO - Creating new RobustScaler +05/03/2018 08:01:48 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:01:48 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:01:48 PM - INFO - Training and test data transformed +05/03/2018 08:01:48 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:01:48 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:01:48 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:01:48 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:01:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:48 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:01:48 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:01:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:48 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:01:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:01:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:01:48 PM - DEBUG - Writing TrueType font. +05/03/2018 08:01:48 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:01:48 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:01:48 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:01:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:01:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:01:48 PM - DEBUG - Writing TrueType font. +05/03/2018 08:01:48 PM - INFO - Train model +05/03/2018 08:01:48 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:01:48 PM - INFO - KeyError +05/03/2018 08:01:48 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:01:48 PM - INFO - Compile model +05/03/2018 08:01:48 PM - INFO - No weights found, starting completely new model +05/03/2018 08:01:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:01:55 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:01:59 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:02:00 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:02:00 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:02:02 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:02:02 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:02:02 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:02:02 PM - INFO - Creating new RobustScaler +05/03/2018 08:02:02 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:02:02 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:02:02 PM - INFO - Training and test data transformed +05/03/2018 08:02:02 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:02:02 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:02:02 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:02:02 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:02:02 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:02 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:02:02 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:02:02 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:02 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:02:02 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:02:02 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:02:02 PM - DEBUG - Writing TrueType font. +05/03/2018 08:02:02 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:02:02 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:02:02 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:02:02 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:02:02 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:02:02 PM - DEBUG - Writing TrueType font. +05/03/2018 08:02:02 PM - INFO - Train model +05/03/2018 08:02:02 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:02:02 PM - INFO - KeyError +05/03/2018 08:02:02 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:02:02 PM - INFO - Compile model +05/03/2018 08:02:02 PM - INFO - No weights found, starting completely new model +05/03/2018 08:02:02 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:09 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:02:12 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:02:14 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:02:14 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:02:15 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:02:15 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:02:15 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:02:15 PM - INFO - Creating new RobustScaler +05/03/2018 08:02:15 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:02:15 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:02:15 PM - INFO - Training and test data transformed +05/03/2018 08:02:15 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:02:15 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:02:15 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:02:15 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:02:15 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:15 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:02:15 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:02:15 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:15 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:02:15 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:02:15 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:02:15 PM - DEBUG - Writing TrueType font. +05/03/2018 08:02:15 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:02:15 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:02:15 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:02:16 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:02:16 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:02:16 PM - DEBUG - Writing TrueType font. +05/03/2018 08:02:16 PM - INFO - Train model +05/03/2018 08:02:16 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:02:16 PM - INFO - KeyError +05/03/2018 08:02:16 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:02:16 PM - INFO - Compile model +05/03/2018 08:02:16 PM - INFO - No weights found, starting completely new model +05/03/2018 08:02:16 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:23 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:02:27 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:02:29 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:02:29 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:02:30 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:02:30 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:02:30 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:02:30 PM - INFO - Creating new RobustScaler +05/03/2018 08:02:30 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:02:30 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:02:30 PM - INFO - Training and test data transformed +05/03/2018 08:02:30 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:02:30 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:02:30 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:02:30 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:02:30 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:30 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:02:30 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:02:30 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:30 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:02:30 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:02:30 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:02:30 PM - DEBUG - Writing TrueType font. +05/03/2018 08:02:30 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:02:30 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:02:30 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:02:30 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:02:30 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:02:30 PM - DEBUG - Writing TrueType font. +05/03/2018 08:02:30 PM - INFO - Train model +05/03/2018 08:02:31 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:02:31 PM - INFO - KeyError +05/03/2018 08:02:31 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:02:31 PM - INFO - Compile model +05/03/2018 08:02:31 PM - INFO - No weights found, starting completely new model +05/03/2018 08:02:31 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:41 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:02:45 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:02:46 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:02:46 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:02:48 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:02:48 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:02:48 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:02:48 PM - INFO - Creating new RobustScaler +05/03/2018 08:02:48 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:02:48 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:02:48 PM - INFO - Training and test data transformed +05/03/2018 08:02:48 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:02:48 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:02:48 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:02:48 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:02:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:48 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:02:48 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:02:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:48 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:02:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:02:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:02:48 PM - DEBUG - Writing TrueType font. +05/03/2018 08:02:48 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:02:48 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:02:48 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:02:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:02:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:02:48 PM - DEBUG - Writing TrueType font. +05/03/2018 08:02:48 PM - INFO - Train model +05/03/2018 08:02:48 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:02:48 PM - INFO - KeyError +05/03/2018 08:02:48 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:02:48 PM - INFO - Compile model +05/03/2018 08:02:48 PM - INFO - No weights found, starting completely new model +05/03/2018 08:02:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:02:58 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:03:02 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:03:03 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:03:03 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:03:05 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:03:05 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:03:05 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:03:05 PM - INFO - Creating new RobustScaler +05/03/2018 08:03:05 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:03:05 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:03:05 PM - INFO - Training and test data transformed +05/03/2018 08:03:05 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:03:05 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:03:05 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:03:05 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:03:05 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:05 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:03:05 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:03:05 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:05 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:03:05 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:03:05 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:03:05 PM - DEBUG - Writing TrueType font. +05/03/2018 08:03:05 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:03:05 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:03:05 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:03:05 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:03:05 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:03:05 PM - DEBUG - Writing TrueType font. +05/03/2018 08:03:05 PM - INFO - Train model +05/03/2018 08:03:05 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:03:05 PM - INFO - KeyError +05/03/2018 08:03:05 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:03:05 PM - INFO - Compile model +05/03/2018 08:03:05 PM - INFO - No weights found, starting completely new model +05/03/2018 08:03:05 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:14 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:03:17 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:03:19 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:03:19 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:03:20 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:03:20 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:03:20 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:03:20 PM - INFO - Creating new RobustScaler +05/03/2018 08:03:20 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:03:20 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:03:20 PM - INFO - Training and test data transformed +05/03/2018 08:03:20 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:03:20 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:03:20 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:03:20 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:03:20 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:20 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:03:20 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:03:21 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:21 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:03:21 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:03:21 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:03:21 PM - DEBUG - Writing TrueType font. +05/03/2018 08:03:21 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:03:21 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:03:21 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:03:21 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:03:21 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:03:21 PM - DEBUG - Writing TrueType font. +05/03/2018 08:03:21 PM - INFO - Train model +05/03/2018 08:03:21 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:03:21 PM - INFO - KeyError +05/03/2018 08:03:21 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:03:21 PM - INFO - Compile model +05/03/2018 08:03:21 PM - INFO - No weights found, starting completely new model +05/03/2018 08:03:21 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:28 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:03:32 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:03:34 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:03:34 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:03:35 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:03:35 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:03:35 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:03:35 PM - INFO - Creating new RobustScaler +05/03/2018 08:03:35 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:03:35 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:03:35 PM - INFO - Training and test data transformed +05/03/2018 08:03:35 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:03:35 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:03:35 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:03:35 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:03:35 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:35 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:03:35 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:03:35 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:35 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:03:35 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:03:35 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:03:35 PM - DEBUG - Writing TrueType font. +05/03/2018 08:03:35 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:03:35 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:03:35 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:03:35 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:03:35 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:03:35 PM - DEBUG - Writing TrueType font. +05/03/2018 08:03:36 PM - INFO - Train model +05/03/2018 08:03:36 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:03:36 PM - INFO - KeyError +05/03/2018 08:03:36 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:03:36 PM - INFO - Compile model +05/03/2018 08:03:36 PM - INFO - No weights found, starting completely new model +05/03/2018 08:03:36 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:42 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:03:46 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:03:48 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:03:48 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:03:49 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:03:49 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:03:49 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:03:49 PM - INFO - Creating new RobustScaler +05/03/2018 08:03:49 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:03:49 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:03:49 PM - INFO - Training and test data transformed +05/03/2018 08:03:49 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:03:49 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:03:49 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:03:49 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:03:49 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:49 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:03:49 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:03:49 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:03:49 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:03:49 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:03:49 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:03:49 PM - DEBUG - Writing TrueType font. +05/03/2018 08:03:49 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:03:49 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:03:49 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:03:49 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:03:49 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:03:49 PM - DEBUG - Writing TrueType font. +05/03/2018 08:03:50 PM - INFO - Train model +05/03/2018 08:03:50 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:03:50 PM - INFO - KeyError +05/03/2018 08:03:50 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:03:50 PM - INFO - Compile model +05/03/2018 08:03:50 PM - INFO - No weights found, starting completely new model +05/03/2018 08:03:50 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:04:01 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:04:04 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:04:06 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:04:06 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:04:07 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:04:07 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:04:07 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:04:07 PM - INFO - Creating new RobustScaler +05/03/2018 08:04:07 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:04:07 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:04:07 PM - INFO - Training and test data transformed +05/03/2018 08:04:07 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:04:07 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:04:07 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:04:07 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:04:08 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:04:08 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:04:08 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:04:08 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:04:08 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:04:08 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:04:08 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:04:08 PM - DEBUG - Writing TrueType font. +05/03/2018 08:04:08 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:04:08 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:04:08 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:04:08 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:04:08 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:04:08 PM - DEBUG - Writing TrueType font. +05/03/2018 08:04:08 PM - INFO - Train model +05/03/2018 08:04:08 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:04:08 PM - INFO - KeyError +05/03/2018 08:04:08 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:04:08 PM - INFO - Compile model +05/03/2018 08:04:08 PM - INFO - No weights found, starting completely new model +05/03/2018 08:04:08 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:04:17 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:04:20 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:04:22 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:04:22 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:04:23 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:04:23 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:04:23 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:04:23 PM - INFO - Creating new RobustScaler +05/03/2018 08:04:23 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:04:23 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:04:23 PM - INFO - Training and test data transformed +05/03/2018 08:04:23 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:04:23 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:04:23 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:04:23 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:04:23 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:04:23 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:04:23 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:04:24 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:04:24 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:04:24 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:04:24 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:04:24 PM - DEBUG - Writing TrueType font. +05/03/2018 08:04:24 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:04:24 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:04:24 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:04:24 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:04:24 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:04:24 PM - DEBUG - Writing TrueType font. +05/03/2018 08:04:24 PM - INFO - Train model +05/03/2018 08:04:24 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:04:24 PM - INFO - KeyError +05/03/2018 08:04:24 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:04:24 PM - INFO - Compile model +05/03/2018 08:04:25 PM - INFO - No weights found, starting completely new model +05/03/2018 08:04:25 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:04:35 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:04:38 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:04:40 PM - INFO - Generation average: 96.94% +05/03/2018 08:04:40 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 08:04:40 PM - INFO - ***Doing generation 9 of 10*** +05/03/2018 08:04:40 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:04:40 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:04:41 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:04:41 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:04:41 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:04:41 PM - INFO - Creating new RobustScaler +05/03/2018 08:04:41 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:04:41 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:04:41 PM - INFO - Training and test data transformed +05/03/2018 08:04:41 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:04:41 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:04:41 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:04:41 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:04:41 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:04:41 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:04:41 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:04:41 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:04:41 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:04:41 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:04:41 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:04:41 PM - DEBUG - Writing TrueType font. +05/03/2018 08:04:42 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:04:42 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:04:42 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:04:42 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:04:42 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:04:42 PM - DEBUG - Writing TrueType font. +05/03/2018 08:04:42 PM - INFO - Train model +05/03/2018 08:04:42 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:04:42 PM - INFO - KeyError +05/03/2018 08:04:42 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:04:42 PM - INFO - Compile model +05/03/2018 08:04:42 PM - INFO - No weights found, starting completely new model +05/03/2018 08:04:42 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:05:33 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:05:41 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:05:45 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:05:45 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:05:47 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:05:47 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:05:47 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:05:47 PM - INFO - Creating new RobustScaler +05/03/2018 08:05:47 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:05:47 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:05:47 PM - INFO - Training and test data transformed +05/03/2018 08:05:47 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:05:47 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:05:47 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:05:47 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:05:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:05:47 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:05:47 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:05:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:05:47 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:05:47 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:05:47 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:05:47 PM - DEBUG - Writing TrueType font. +05/03/2018 08:05:47 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:05:47 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:05:47 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:05:47 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:05:47 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:05:47 PM - DEBUG - Writing TrueType font. +05/03/2018 08:05:47 PM - INFO - Train model +05/03/2018 08:05:47 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:05:47 PM - INFO - KeyError +05/03/2018 08:05:47 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:05:47 PM - INFO - Compile model +05/03/2018 08:05:47 PM - INFO - No weights found, starting completely new model +05/03/2018 08:05:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:06:45 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:06:57 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:07:02 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:07:02 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:07:04 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:07:04 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:07:04 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:07:04 PM - INFO - Creating new RobustScaler +05/03/2018 08:07:04 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:07:04 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:07:04 PM - INFO - Training and test data transformed +05/03/2018 08:07:04 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:07:04 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:07:04 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:07:04 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:07:04 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:04 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:07:04 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:07:04 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:04 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:07:04 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:07:04 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:07:04 PM - DEBUG - Writing TrueType font. +05/03/2018 08:07:04 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:07:04 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:07:04 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:07:04 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:07:04 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:07:04 PM - DEBUG - Writing TrueType font. +05/03/2018 08:07:04 PM - INFO - Train model +05/03/2018 08:07:04 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:07:04 PM - INFO - KeyError +05/03/2018 08:07:04 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:07:04 PM - INFO - Compile model +05/03/2018 08:07:04 PM - INFO - No weights found, starting completely new model +05/03/2018 08:07:04 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:14 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:07:18 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:07:19 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:07:19 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:07:21 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:07:21 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:07:21 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:07:21 PM - INFO - Creating new RobustScaler +05/03/2018 08:07:21 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:07:21 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:07:21 PM - INFO - Training and test data transformed +05/03/2018 08:07:21 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:07:21 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:07:21 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:07:21 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:07:21 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:21 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:07:21 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:07:21 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:21 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:07:21 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:07:21 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:07:21 PM - DEBUG - Writing TrueType font. +05/03/2018 08:07:21 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:07:21 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:07:21 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:07:21 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:07:21 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:07:21 PM - DEBUG - Writing TrueType font. +05/03/2018 08:07:21 PM - INFO - Train model +05/03/2018 08:07:21 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:07:21 PM - INFO - KeyError +05/03/2018 08:07:21 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:07:21 PM - INFO - Compile model +05/03/2018 08:07:21 PM - INFO - No weights found, starting completely new model +05/03/2018 08:07:21 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:29 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:07:33 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:07:35 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:07:35 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:07:36 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:07:36 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:07:36 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:07:36 PM - INFO - Creating new RobustScaler +05/03/2018 08:07:36 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:07:36 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:07:36 PM - INFO - Training and test data transformed +05/03/2018 08:07:36 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:07:36 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:07:36 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:07:36 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:07:36 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:36 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:07:36 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:07:36 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:36 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:07:36 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:07:36 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:07:36 PM - DEBUG - Writing TrueType font. +05/03/2018 08:07:37 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:07:37 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:07:37 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:07:37 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:07:37 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:07:37 PM - DEBUG - Writing TrueType font. +05/03/2018 08:07:37 PM - INFO - Train model +05/03/2018 08:07:37 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:07:37 PM - INFO - KeyError +05/03/2018 08:07:37 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:07:37 PM - INFO - Compile model +05/03/2018 08:07:37 PM - INFO - No weights found, starting completely new model +05/03/2018 08:07:37 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:46 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:07:50 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:07:51 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:07:51 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:07:53 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:07:53 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:07:53 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:07:53 PM - INFO - Creating new RobustScaler +05/03/2018 08:07:53 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:07:53 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:07:53 PM - INFO - Training and test data transformed +05/03/2018 08:07:53 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:07:53 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:07:53 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:07:53 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:07:53 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:53 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:07:53 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:07:53 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:07:53 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:07:53 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:07:53 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:07:53 PM - DEBUG - Writing TrueType font. +05/03/2018 08:07:53 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:07:53 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:07:53 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:07:53 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:07:53 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:07:53 PM - DEBUG - Writing TrueType font. +05/03/2018 08:07:53 PM - INFO - Train model +05/03/2018 08:07:53 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:07:53 PM - INFO - KeyError +05/03/2018 08:07:53 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:07:53 PM - INFO - Compile model +05/03/2018 08:07:53 PM - INFO - No weights found, starting completely new model +05/03/2018 08:07:53 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:04 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:08:08 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:08:09 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:08:09 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:08:11 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:08:11 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:08:11 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:08:11 PM - INFO - Creating new RobustScaler +05/03/2018 08:08:11 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:08:11 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:08:11 PM - INFO - Training and test data transformed +05/03/2018 08:08:11 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:08:11 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:08:11 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:08:11 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:08:11 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:11 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:08:11 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:08:11 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:11 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:08:11 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:08:11 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:08:11 PM - DEBUG - Writing TrueType font. +05/03/2018 08:08:11 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:08:11 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:08:11 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:08:11 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:08:11 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:08:11 PM - DEBUG - Writing TrueType font. +05/03/2018 08:08:11 PM - INFO - Train model +05/03/2018 08:08:11 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:08:11 PM - INFO - KeyError +05/03/2018 08:08:11 PM - INFO - Using adamax(**{}) as Optimizer +05/03/2018 08:08:11 PM - INFO - Compile model +05/03/2018 08:08:11 PM - INFO - No weights found, starting completely new model +05/03/2018 08:08:11 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:22 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:08:26 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:08:28 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:08:28 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:08:29 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:08:29 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:08:29 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:08:29 PM - INFO - Creating new RobustScaler +05/03/2018 08:08:29 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:08:29 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:08:29 PM - INFO - Training and test data transformed +05/03/2018 08:08:29 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:08:29 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:08:29 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:08:29 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:08:29 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:29 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:08:29 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:08:29 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:29 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:08:29 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:08:29 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:08:29 PM - DEBUG - Writing TrueType font. +05/03/2018 08:08:29 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:08:29 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:08:29 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:08:29 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:08:29 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:08:29 PM - DEBUG - Writing TrueType font. +05/03/2018 08:08:29 PM - INFO - Train model +05/03/2018 08:08:29 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:08:29 PM - INFO - KeyError +05/03/2018 08:08:29 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:08:29 PM - INFO - Compile model +05/03/2018 08:08:29 PM - INFO - No weights found, starting completely new model +05/03/2018 08:08:29 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:40 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:08:44 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:08:46 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:08:46 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:08:47 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:08:47 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:08:47 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:08:47 PM - INFO - Creating new RobustScaler +05/03/2018 08:08:47 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:08:47 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:08:47 PM - INFO - Training and test data transformed +05/03/2018 08:08:47 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:08:47 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:08:47 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:08:47 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:08:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:47 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:08:47 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:08:47 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:47 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:08:47 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:08:47 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:08:47 PM - DEBUG - Writing TrueType font. +05/03/2018 08:08:47 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:08:47 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:08:47 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:08:47 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:08:47 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:08:47 PM - DEBUG - Writing TrueType font. +05/03/2018 08:08:48 PM - INFO - Train model +05/03/2018 08:08:48 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:08:48 PM - INFO - KeyError +05/03/2018 08:08:48 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:08:48 PM - INFO - Compile model +05/03/2018 08:08:48 PM - INFO - No weights found, starting completely new model +05/03/2018 08:08:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:08:58 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:09:02 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:09:04 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:09:04 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:09:05 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:09:05 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:09:05 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:09:05 PM - INFO - Creating new RobustScaler +05/03/2018 08:09:05 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:09:05 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:09:05 PM - INFO - Training and test data transformed +05/03/2018 08:09:05 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:09:05 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:09:05 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:09:05 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:09:05 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:09:05 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:09:05 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:09:05 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:09:05 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:09:05 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:09:05 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:09:05 PM - DEBUG - Writing TrueType font. +05/03/2018 08:09:05 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:09:05 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:09:05 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:09:05 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:09:05 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:09:05 PM - DEBUG - Writing TrueType font. +05/03/2018 08:09:05 PM - INFO - Train model +05/03/2018 08:09:05 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:09:05 PM - INFO - KeyError +05/03/2018 08:09:05 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:09:05 PM - INFO - Compile model +05/03/2018 08:09:05 PM - INFO - No weights found, starting completely new model +05/03/2018 08:09:05 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:09:14 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:09:18 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:09:20 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:09:20 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:09:21 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:09:21 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:09:21 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:09:21 PM - INFO - Creating new RobustScaler +05/03/2018 08:09:21 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:09:22 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:09:22 PM - INFO - Training and test data transformed +05/03/2018 08:09:22 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:09:22 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:09:22 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:09:22 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:09:22 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:09:22 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:09:22 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:09:22 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:09:22 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:09:22 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:09:22 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:09:22 PM - DEBUG - Writing TrueType font. +05/03/2018 08:09:22 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:09:22 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:09:22 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:09:22 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:09:22 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:09:22 PM - DEBUG - Writing TrueType font. +05/03/2018 08:09:22 PM - INFO - Train model +05/03/2018 08:09:22 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:09:22 PM - INFO - KeyError +05/03/2018 08:09:22 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:09:22 PM - INFO - Compile model +05/03/2018 08:09:22 PM - INFO - No weights found, starting completely new model +05/03/2018 08:09:22 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:09:30 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:09:34 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:09:36 PM - INFO - Generation average: 96.99% +05/03/2018 08:09:36 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 08:09:36 PM - INFO - ***Doing generation 10 of 10*** +05/03/2018 08:09:36 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:09:36 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:09:37 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:09:37 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:09:37 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:09:37 PM - INFO - Creating new RobustScaler +05/03/2018 08:09:37 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:09:37 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:09:37 PM - INFO - Training and test data transformed +05/03/2018 08:09:37 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:09:37 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:09:37 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:09:37 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:09:37 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:09:37 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:09:37 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:09:37 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:09:37 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:09:37 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:09:37 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:09:37 PM - DEBUG - Writing TrueType font. +05/03/2018 08:09:37 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:09:37 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:09:37 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:09:37 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:09:37 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:09:37 PM - DEBUG - Writing TrueType font. +05/03/2018 08:09:37 PM - INFO - Train model +05/03/2018 08:09:38 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:09:38 PM - INFO - KeyError +05/03/2018 08:09:38 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:09:38 PM - INFO - Compile model +05/03/2018 08:09:38 PM - INFO - No weights found, starting completely new model +05/03/2018 08:09:38 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:10:14 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:10:21 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:10:24 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:10:24 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:10:25 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:10:25 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:10:25 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:10:25 PM - INFO - Creating new RobustScaler +05/03/2018 08:10:25 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:10:25 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:10:25 PM - INFO - Training and test data transformed +05/03/2018 08:10:25 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:10:25 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:10:25 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:10:25 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:10:26 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:10:26 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:10:26 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:10:26 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:10:26 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:10:26 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:10:26 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:10:26 PM - DEBUG - Writing TrueType font. +05/03/2018 08:10:26 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:10:26 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:10:26 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:10:26 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:10:26 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:10:26 PM - DEBUG - Writing TrueType font. +05/03/2018 08:10:26 PM - INFO - Train model +05/03/2018 08:10:26 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:10:26 PM - INFO - KeyError +05/03/2018 08:10:26 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:10:26 PM - INFO - Compile model +05/03/2018 08:10:26 PM - INFO - No weights found, starting completely new model +05/03/2018 08:10:26 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:10:35 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:10:39 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:10:41 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:10:41 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:10:42 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:10:42 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:10:42 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:10:42 PM - INFO - Creating new RobustScaler +05/03/2018 08:10:42 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:10:42 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:10:42 PM - INFO - Training and test data transformed +05/03/2018 08:10:42 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:10:42 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:10:42 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:10:42 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:10:42 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:10:42 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:10:42 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:10:42 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:10:42 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:10:42 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:10:42 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:10:42 PM - DEBUG - Writing TrueType font. +05/03/2018 08:10:42 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:10:42 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:10:42 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:10:42 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:10:42 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:10:42 PM - DEBUG - Writing TrueType font. +05/03/2018 08:10:42 PM - INFO - Train model +05/03/2018 08:10:43 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:10:43 PM - INFO - KeyError +05/03/2018 08:10:43 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:10:43 PM - INFO - Compile model +05/03/2018 08:10:43 PM - INFO - No weights found, starting completely new model +05/03/2018 08:10:43 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:10:51 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:10:55 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:10:57 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:10:57 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:10:58 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:10:58 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:10:58 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:10:58 PM - INFO - Creating new RobustScaler +05/03/2018 08:10:58 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:10:58 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:10:58 PM - INFO - Training and test data transformed +05/03/2018 08:10:58 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:10:58 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:10:58 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:10:58 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:10:58 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:10:58 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:10:59 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:10:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:10:59 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:10:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:10:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:10:59 PM - DEBUG - Writing TrueType font. +05/03/2018 08:10:59 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:10:59 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:10:59 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:10:59 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:10:59 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:10:59 PM - DEBUG - Writing TrueType font. +05/03/2018 08:10:59 PM - INFO - Train model +05/03/2018 08:10:59 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:10:59 PM - INFO - KeyError +05/03/2018 08:10:59 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:10:59 PM - INFO - Compile model +05/03/2018 08:10:59 PM - INFO - No weights found, starting completely new model +05/03/2018 08:10:59 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:11:06 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:11:10 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:11:12 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:11:12 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:11:13 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:11:13 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:11:13 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:11:13 PM - INFO - Creating new RobustScaler +05/03/2018 08:11:13 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:11:13 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:11:13 PM - INFO - Training and test data transformed +05/03/2018 08:11:13 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:11:13 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:11:13 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:11:13 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:11:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:11:13 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:11:13 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:11:13 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:11:13 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:11:13 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:11:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:11:13 PM - DEBUG - Writing TrueType font. +05/03/2018 08:11:13 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:11:13 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:11:13 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:11:13 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:11:13 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:11:13 PM - DEBUG - Writing TrueType font. +05/03/2018 08:11:14 PM - INFO - Train model +05/03/2018 08:11:14 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:11:14 PM - INFO - KeyError +05/03/2018 08:11:14 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:11:14 PM - INFO - Compile model +05/03/2018 08:11:14 PM - INFO - No weights found, starting completely new model +05/03/2018 08:11:14 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:11:27 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:11:32 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:11:35 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:11:35 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:11:36 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:11:36 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:11:36 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:11:36 PM - INFO - Creating new RobustScaler +05/03/2018 08:11:36 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:11:36 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:11:36 PM - INFO - Training and test data transformed +05/03/2018 08:11:36 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:11:36 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:11:36 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:11:36 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:11:36 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:11:36 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:11:36 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:11:36 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:11:36 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:11:36 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:11:36 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:11:36 PM - DEBUG - Writing TrueType font. +05/03/2018 08:11:36 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:11:36 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:11:36 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:11:36 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:11:36 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:11:36 PM - DEBUG - Writing TrueType font. +05/03/2018 08:11:36 PM - INFO - Train model +05/03/2018 08:11:36 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:11:36 PM - INFO - KeyError +05/03/2018 08:11:36 PM - INFO - Using rmsprop(**{}) as Optimizer +05/03/2018 08:11:36 PM - INFO - Compile model +05/03/2018 08:11:37 PM - INFO - No weights found, starting completely new model +05/03/2018 08:11:37 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:11:49 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:11:53 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:11:55 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:11:55 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:11:56 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:11:56 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:11:56 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:11:56 PM - INFO - Creating new RobustScaler +05/03/2018 08:11:56 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:11:56 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:11:56 PM - INFO - Training and test data transformed +05/03/2018 08:11:56 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:11:56 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:11:56 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:11:56 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:11:56 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:11:56 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:11:56 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:11:56 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:11:56 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:11:56 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:11:57 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:11:57 PM - DEBUG - Writing TrueType font. +05/03/2018 08:11:57 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:11:57 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:11:57 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:11:57 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:11:57 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:11:57 PM - DEBUG - Writing TrueType font. +05/03/2018 08:11:57 PM - INFO - Train model +05/03/2018 08:11:57 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:11:57 PM - INFO - KeyError +05/03/2018 08:11:57 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:11:57 PM - INFO - Compile model +05/03/2018 08:11:57 PM - INFO - No weights found, starting completely new model +05/03/2018 08:11:57 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:07 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:12:12 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:12:13 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:12:13 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:12:15 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:12:15 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:12:15 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:12:15 PM - INFO - Creating new RobustScaler +05/03/2018 08:12:15 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:12:15 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:12:15 PM - INFO - Training and test data transformed +05/03/2018 08:12:15 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:12:15 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:12:15 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:12:15 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:12:15 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:15 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:12:15 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:12:15 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:15 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:12:15 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:12:15 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:12:15 PM - DEBUG - Writing TrueType font. +05/03/2018 08:12:15 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:12:15 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:12:15 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:12:15 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:12:15 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:12:15 PM - DEBUG - Writing TrueType font. +05/03/2018 08:12:15 PM - INFO - Train model +05/03/2018 08:12:15 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:12:15 PM - INFO - KeyError +05/03/2018 08:12:15 PM - INFO - Using nadam(**{}) as Optimizer +05/03/2018 08:12:15 PM - INFO - Compile model +05/03/2018 08:12:15 PM - INFO - No weights found, starting completely new model +05/03/2018 08:12:15 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:27 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:12:31 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:12:33 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:12:33 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:12:34 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:12:34 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:12:34 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:12:34 PM - INFO - Creating new RobustScaler +05/03/2018 08:12:34 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:12:34 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:12:34 PM - INFO - Training and test data transformed +05/03/2018 08:12:34 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:12:34 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:12:34 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:12:34 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:12:34 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:34 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:12:34 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:12:34 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:34 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:12:34 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:12:34 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:12:34 PM - DEBUG - Writing TrueType font. +05/03/2018 08:12:34 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:12:34 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:12:34 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:12:34 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:12:34 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:12:34 PM - DEBUG - Writing TrueType font. +05/03/2018 08:12:34 PM - INFO - Train model +05/03/2018 08:12:34 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:12:34 PM - INFO - KeyError +05/03/2018 08:12:34 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:12:34 PM - INFO - Compile model +05/03/2018 08:12:34 PM - INFO - No weights found, starting completely new model +05/03/2018 08:12:34 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:40 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:12:45 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:12:47 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:12:47 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:12:48 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:12:48 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:12:48 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:12:48 PM - INFO - Creating new RobustScaler +05/03/2018 08:12:48 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:12:48 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:12:48 PM - INFO - Training and test data transformed +05/03/2018 08:12:48 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:12:48 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:12:48 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:12:48 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:12:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:48 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:12:48 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:12:48 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:48 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:12:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:12:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:12:48 PM - DEBUG - Writing TrueType font. +05/03/2018 08:12:48 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:12:48 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:12:48 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:12:48 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:12:48 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:12:48 PM - DEBUG - Writing TrueType font. +05/03/2018 08:12:49 PM - INFO - Train model +05/03/2018 08:12:49 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:12:49 PM - INFO - KeyError +05/03/2018 08:12:49 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:12:49 PM - INFO - Compile model +05/03/2018 08:12:49 PM - INFO - No weights found, starting completely new model +05/03/2018 08:12:49 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:12:58 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:13:02 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:13:04 PM - INFO - Trying to load x_train from ./outputs/x_train.h5 +05/03/2018 08:13:04 PM - INFO - Couldn't load all datasets - reading from ROOT trees +05/03/2018 08:13:05 PM - DEBUG - training data before transformation: [[950.8178 310.67346 ] + [689.7896 164.79187 ] + [605.84894 76.77965 ] + ... + [221.43806 57.68829 ] + [478.28116 27.593285] + [759.3491 47.761116]] +05/03/2018 08:13:05 PM - DEBUG - minimum values: [200.00388, 0.00040848268] +05/03/2018 08:13:05 PM - DEBUG - maximum values: [2972.1663, 6567.212] +05/03/2018 08:13:05 PM - INFO - Creating new RobustScaler +05/03/2018 08:13:05 PM - INFO - Fitting RobustScaler to training data +05/03/2018 08:13:05 PM - DEBUG - training data after transformation: [[ 4.678216 5.0818543 ] + [ 2.8512027 2.122609 ] + [ 2.2636774 0.3372586 ] + ... + [-0.42692736 -0.05001445] + [ 1.370793 -0.6604993 ] + [ 3.3380704 -0.25138968]] +05/03/2018 08:13:05 PM - INFO - Training and test data transformed +05/03/2018 08:13:05 PM - DEBUG - Plotting bkg (min=-0.576951563358, max=18.8262271881) from [-0.36245644 -0.571032 -0.5530677 ... -0.42692736 1.370793 + 3.3380704 ] +05/03/2018 08:13:05 PM - DEBUG - Plotting sig (min=-0.576769471169, max=8.76014995575) from [ 4.678216 2.8512027 2.2636774 ... -0.28397465 0.3377439 + 7.3467083 ] +05/03/2018 08:13:05 PM - DEBUG - Calculated range based on percentiles: (-0.5013251566886902, 6.450924358367917) +05/03/2018 08:13:05 PM - DEBUG - Calculating background weights for plotting +05/03/2018 08:13:06 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:13:06 PM - DEBUG - Background weights: [4.59655514e-06 4.59655514e-06 4.59655514e-06 ... 1.48291876e-07 + 1.48291876e-07 1.51569264e-07] +05/03/2018 08:13:06 PM - DEBUG - Calculating signal weights for plotting +05/03/2018 08:13:06 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:13:06 PM - DEBUG - Signal weights: [2.18542941e-05 2.18542941e-05 2.18542941e-05 ... 2.18542941e-05 + 2.18542941e-05 2.37158099e-05] +05/03/2018 08:13:06 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:13:06 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:13:06 PM - DEBUG - Writing TrueType font. +05/03/2018 08:13:06 PM - DEBUG - Plotting bkg (min=-1.22022783756, max=131.997329712) from [-0.26027325 -0.4640601 -0.76443064 ... -0.05001445 -0.6604993 + -0.25138968] +05/03/2018 08:13:06 PM - DEBUG - Plotting sig (min=-1.21512341499, max=33.6264152527) from [ 5.0818543 2.122609 0.3372586 ... 7.0550213 7.685349 20.405071 ] +05/03/2018 08:13:06 PM - DEBUG - Calculated range based on percentiles: (-1.0662700653076171, 25.562595825195302) +05/03/2018 08:13:06 PM - DEBUG - Assigning font /F1 = u'/home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf' +05/03/2018 08:13:06 PM - DEBUG - Embedding font /home/t/Thomas.Weber/.miniconda2/envs/ml_env/lib/python2.7/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf. +05/03/2018 08:13:06 PM - DEBUG - Writing TrueType font. +05/03/2018 08:13:06 PM - INFO - Train model +05/03/2018 08:13:06 PM - INFO - Trying to load pred_test from ./outputs/pred_test.h5 +05/03/2018 08:13:06 PM - INFO - KeyError +05/03/2018 08:13:06 PM - INFO - Using adagrad(**{}) as Optimizer +05/03/2018 08:13:06 PM - INFO - Compile model +05/03/2018 08:13:06 PM - INFO - No weights found, starting completely new model +05/03/2018 08:13:06 PM - DEBUG - Calculated class_weight: [0.5026114128283947, 96.2336187069562] +05/03/2018 08:13:15 PM - INFO - Create/Update predictions for ROC curve +05/03/2018 08:13:19 PM - INFO - Get test loss and metrics of the model +05/03/2018 08:13:21 PM - INFO - Generation average: 96.98% +05/03/2018 08:13:21 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 08:13:21 PM - INFO - -------------------------------------------------------------------------------- +05/03/2018 08:13:21 PM - INFO - {'nb_layers': 4, 'activation': 'elu', 'optimizer': 'rmsprop', 'nb_neurons': 64} +05/03/2018 08:13:21 PM - INFO - Network accuracy: 97.29% +05/03/2018 08:13:21 PM - INFO - {'nb_layers': 4, 'activation': 'elu', 'optimizer': 'nadam', 'nb_neurons': 64} +05/03/2018 08:13:21 PM - INFO - Network accuracy: 97.28% +05/03/2018 08:13:21 PM - INFO - {'nb_layers': 2, 'activation': 'elu', 'optimizer': 'nadam', 'nb_neurons': 64} +05/03/2018 08:13:21 PM - INFO - Network accuracy: 97.27% +05/03/2018 08:13:21 PM - INFO - {'nb_layers': 2, 'activation': 'elu', 'optimizer': 'nadam', 'nb_neurons': 64} +05/03/2018 08:13:21 PM - INFO - Network accuracy: 97.27% +05/03/2018 08:13:21 PM - INFO - {'nb_layers': 2, 'activation': 'elu', 'optimizer': 'adagrad', 'nb_neurons': 64} +05/03/2018 08:13:21 PM - INFO - Network accuracy: 97.25% diff --git a/Genetic_Algorithm/main.py b/Genetic_Algorithm/main.py new file mode 100755 index 0000000000000000000000000000000000000000..074a7c1b28a6a4a2c62f0d3a2f79d6937aae040e --- /dev/null +++ b/Genetic_Algorithm/main.py @@ -0,0 +1,111 @@ +#!/usr/bin/env python + +import logging +from optimizer import Optimizer +from tqdm import tqdm + +# Setup logging. +logging.basicConfig( + format='%(asctime)s - %(levelname)s - %(message)s', + datefmt='%m/%d/%Y %I:%M:%S %p', + level=logging.DEBUG, + filename='log.txt' +) + +def train_networks(networks): + """Train each network. + + Args: + networks (list): Current population of networks + """ + pbar = tqdm(total=len(networks)) + for network in networks: + network.train() + pbar.update(1) + pbar.close() + +def get_average_accuracy(networks): + """Get the average accuracy for a group of networks. + + Args: + networks (list): List of networks + + Returns: + float: The average accuracy of a population of networks. + + """ + total_accuracy = 0 + for network in networks: + total_accuracy += network.accuracy + + return total_accuracy / len(networks) + +def generate(generations, population, nn_param_choices): + """Generate a network with the genetic algorithm. + + Args: + generations (int): Number of times to evole the population + population (int): Number of networks in each generation + nn_param_choices (dict): Parameter choices for networks + + """ + optimizer = Optimizer(nn_param_choices) + networks = optimizer.create_population(population) + + # Evolve the generation. + for i in range(generations): + logging.info("***Doing generation %d of %d***" % + (i + 1, generations)) + + # Train and get accuracy for networks. + train_networks(networks) + + # Get the average accuracy for this generation. + average_accuracy = get_average_accuracy(networks) + + # Print out the average accuracy each generation. + logging.info("Generation average: %.2f%%" % (average_accuracy * 100)) + logging.info('-'*80) + + # Evolve, except on the last iteration. + if i != generations - 1: + # Do the evolution. + networks = optimizer.evolve(networks) + + # Sort our final population. + networks = sorted(networks, key=lambda x: x.accuracy, reverse=True) + + # Print out the top 5 networks. + print_networks(networks[:5]) + +def print_networks(networks): + """Print a list of networks. + + Args: + networks (list): The population of networks + + """ + logging.info('-'*80) + for network in networks: + network.print_network() + +def main(): + """Evolve a network.""" + generations = 10 # Number of times to evole the population. + population = 20 # Number of networks in each generation. + + nn_param_choices = { + 'nb_neurons': [64, 128, 256, 512, 768, 1024], + 'nb_layers': [1, 2, 3, 4], + 'activation': ['relu', 'elu', 'tanh', 'sigmoid'], + 'optimizer': ['rmsprop', 'adam', 'sgd', 'adagrad', + 'adadelta', 'adamax', 'nadam'], + } + + logging.info("***Evolving %d generations with population %d***" % + (generations, population)) + + generate(generations, population, nn_param_choices) + +if __name__ == '__main__': + main() diff --git a/Genetic_Algorithm/network.py b/Genetic_Algorithm/network.py new file mode 100755 index 0000000000000000000000000000000000000000..03f90d8d695feb35ba1092687919b64ea3036677 --- /dev/null +++ b/Genetic_Algorithm/network.py @@ -0,0 +1,54 @@ +#!/usr/bin/env python + +"""Class that represents the network to be evolved.""" +import random +import logging +from train import train_and_score + +class Network(object): + """Represent a network and let us operate on it. + + Currently only works for an MLP. + """ + + def __init__(self, nn_param_choices=None): + """Initialize our network. + + Args: + nn_param_choices (dict): Parameters for the network, includes: + nb_neurons (list): [64, 128, 256] + nb_layers (list): [1, 2, 3, 4] + activation (list): ['relu', 'elu'] + optimizer (list): ['rmsprop', 'adam'] + """ + self.accuracy = 0. + self.nn_param_choices = nn_param_choices + self.network = {} # (dic): represents MLP network parameters + + def create_random(self): + """Create a random network.""" + for key in self.nn_param_choices: + self.network[key] = random.choice(self.nn_param_choices[key]) + + def create_set(self, network): + """Set network properties. + + Args: + network (dict): The network parameters + + """ + self.network = network + + def train(self): + """Train the network and record the accuracy. + + Args: + + """ + if self.accuracy == 0.: + self.accuracy = train_and_score(self.network) + + def print_network(self): + """Print out a network.""" + logging.info(self.network) + logging.info("Network accuracy: %.2f%%" % (self.accuracy * 100)) diff --git a/Genetic_Algorithm/optimizer.py b/Genetic_Algorithm/optimizer.py new file mode 100755 index 0000000000000000000000000000000000000000..5e43338141d45459d0d1dad1bb76f614b508b40e --- /dev/null +++ b/Genetic_Algorithm/optimizer.py @@ -0,0 +1,184 @@ +#!/usr/bin/env python + +""" +Class that holds a genetic algorithm for evolving a network. + +Credit: + A lot of those code was originally inspired by: + http://lethain.com/genetic-algorithms-cool-name-damn-simple/ +""" +from functools import reduce +from operator import add +import random +from network import Network + +class Optimizer(object): + """Class that implements genetic algorithm for MLP optimization.""" + + def __init__(self, nn_param_choices, retain=0.4, + random_select=0.1, mutate_chance=0.2): + """Create an optimizer. + + Args: + nn_param_choices (dict): Possible network paremters + retain (float): Percentage of population to retain after + each generation + random_select (float): Probability of a rejected network + remaining in the population + mutate_chance (float): Probability a network will be + randomly mutated + + """ + self.mutate_chance = mutate_chance + self.random_select = random_select + self.retain = retain + self.nn_param_choices = nn_param_choices + + def create_population(self, count): + """Create a population of random networks. + + Args: + count (int): Number of networks to generate, aka the + size of the population + + Returns: + (list): Population of network objects + + """ + pop = [] + for _ in range(0, count): + # Create a random network. + network = Network(self.nn_param_choices) + network.create_random() + + # Add the network to our population. + pop.append(network) + + return pop + + @staticmethod + def fitness(network): + """Return the accuracy, which is our fitness function.""" + return network.accuracy + + def grade(self, pop): + """Find average fitness for a population. + + Args: + pop (list): The population of networks + + Returns: + (float): The average accuracy of the population + + """ + summed = reduce(add, (self.fitness(network) for network in pop)) + return summed / float((len(pop))) + + def breed(self, mother, father): + """Make two children as parts of their parents. + + Args: + mother (dict): Network parameters + father (dict): Network parameters + + Returns: + (list): Two network objects + + """ + children = [] + for _ in range(2): + + child = {} + + # Loop through the parameters and pick params for the kid. + for param in self.nn_param_choices: + child[param] = random.choice( + [mother.network[param], father.network[param]] + ) + + # Now create a network object. + network = Network(self.nn_param_choices) + network.create_set(child) + + # Randomly mutate some of the children. + if self.mutate_chance > random.random(): + network = self.mutate(network) + + children.append(network) + + return children + + def mutate(self, network): + """Randomly mutate one part of the network. + + Args: + network (dict): The network parameters to mutate + + Returns: + (Network): A randomly mutated network object + + """ + # Choose a random key. + mutation = random.choice(list(self.nn_param_choices.keys())) + + # Mutate one of the params. + network.network[mutation] = random.choice(self.nn_param_choices[mutation]) + + return network + + def evolve(self, pop): + """Evolve a population of networks. + + Args: + pop (list): A list of network parameters + + Returns: + (list): The evolved population of networks + + """ + # Get scores for each network. + graded = [(self.fitness(network), network) for network in pop] + + # Sort on the scores. + graded = [x[1] for x in sorted(graded, key=lambda x: x[0], reverse=True)] + + # Get the number we want to keep for the next gen. + retain_length = int(len(graded)*self.retain) + + # The parents are every network we want to keep. + parents = graded[:retain_length] + + # For those we aren't keeping, randomly keep some anyway. + for individual in graded[retain_length:]: + if self.random_select > random.random(): + parents.append(individual) + + # Now find out how many spots we have left to fill. + parents_length = len(parents) + desired_length = len(pop) - parents_length + children = [] + + # Add children, which are bred from two remaining networks. + while len(children) < desired_length: + + # Get a random mom and dad. + male = random.randint(0, parents_length-1) + female = random.randint(0, parents_length-1) + + # Assuming they aren't the same network... + if male != female: + male = parents[male] + female = parents[female] + + # Breed them. + babies = self.breed(male, female) + + # Add the children one at a time. + for baby in babies: + # Don't grow larger than desired length. + if len(children) < desired_length: + children.append(baby) + + parents.extend(children) + + return parents diff --git a/Genetic_Algorithm/train.py b/Genetic_Algorithm/train.py new file mode 100755 index 0000000000000000000000000000000000000000..4faac3482b302a77ebf17ba23eeb3f1a694d218f --- /dev/null +++ b/Genetic_Algorithm/train.py @@ -0,0 +1,47 @@ +#!/usr/bin/env python + +import os,sys,inspect +currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) +parentdir = os.path.dirname(currentdir) +sys.path.insert(0,parentdir) +import toolkit +from toolkit import KerasROOTClassification + +def init_model(network): + + nb_layers = network['nb_layers'] + nb_neurons = network['nb_neurons'] + activation = network['activation'] + optimizer = network['optimizer'] + + filename = "/project/etp4/nhartmann/trees/allTrees_m1.8_NoSys.root" + + c = KerasROOTClassification("", + signal_trees = [(filename, "GG_oneStep_1705_1105_505_NoSys")], + bkg_trees = [(filename, "ttbar_NoSys"), + (filename, "wjets_Sherpa221_NoSys") + ], + dumping_enabled=False, + optimizer=optimizer, + layers=nb_layers, + nodes=nb_neurons, + activation_function=activation, + #optimizer_opts=dict(lr=100., decay=1e-6, momentum=0.9), + earlystopping_opts=dict(monitor='val_loss', + min_delta=0, patience=2, verbose=0, mode='auto'), + # optimizer="Adam", + selection="lep1Pt<5000", # cut out a few very weird outliers + branches = ["met", "mt"], + weight_expr = "eventWeight*genWeight", + identifiers = ["DatasetNumber", "EventNumber"], + step_bkg = 100) + return c + +def train_and_score(network): + model = init_model(network) + + model.train() + + score = model.score + + return score[1] # 1 is accuracy. 0 is loss. diff --git a/toolkit.py b/toolkit.py index 25231056fb769f6253fe6c825eac65e85451aaf9..286e3cf74adb3f1948511250ee1c07b2ac62492d 100755 --- a/toolkit.py +++ b/toolkit.py @@ -44,19 +44,21 @@ class KerasROOTClassification(object): # Datasets that are stored to (and dynamically loaded from) hdf5 - dataset_names = ["x_train", "x_test", "y_train", "y_test", "w_train", "w_test", "scores_train", "scores_test"] + dataset_names = ["x_train", "x_test", "y_train", "y_test", "w_train", "w_test", "pred_train", "pred_test"] # Datasets that are retrieved from ROOT trees the first time dataset_names_tree = ["x_train", "x_test", "y_train", "y_test", "w_train", "w_test"] def __init__(self, name, *args, **kwargs): self._init_from_args(name, *args, **kwargs) - with open(os.path.join(self.project_dir, "options.json"), "w") as of: - json.dump(dict(args=args, kwargs=kwargs), of) + if self.dumping_enabled: + with open(os.path.join(self.project_dir, "options.json"), "w") as of: + json.dump(dict(args=args, kwargs=kwargs), of) def _init_from_args(self, name, signal_trees, bkg_trees, branches, weight_expr, identifiers, + dumping_enabled=True, selection=None, layers=3, nodes=64, @@ -72,6 +74,7 @@ class KerasROOTClassification(object): earlystopping_opts=None): self.name = name + self.dumping_enabled = dumping_enabled self.signal_trees = signal_trees self.bkg_trees = bkg_trees self.branches = branches @@ -114,8 +117,9 @@ class KerasROOTClassification(object): self._y_test = None self._w_train = None self._w_test = None - self._scores_train = None - self._scores_test = None + self.pred_train = None + self.pred_test = None + self.score = None self.s_eventlist_train = None self.b_eventlist_train = None @@ -169,8 +173,8 @@ class KerasROOTClassification(object): branches=self.branches+[self.weight_expr], selection=self.selection, start=1, step=self.step_bkg) - - self._dump_training_list() + if self.dumping_enabled: + self._dump_training_list() self.s_eventlist_train = self.s_train[self.identifiers] self.b_eventlist_train = self.b_train[self.identifiers] @@ -196,7 +200,8 @@ class KerasROOTClassification(object): self.y_test[:len(self.s_test)] = 1 self.y_test[len(self.s_test):] = 0 - self._dump_to_hdf5(*self.dataset_names_tree) + if self.dumping_enabled: + self._dump_to_hdf5(*self.dataset_names_tree) self.data_loaded = True @@ -261,7 +266,8 @@ class KerasROOTClassification(object): # probably we either want to fit only training data or training and test data together # logger.info("Fitting StandardScaler to test data") # self._scaler.fit(self.x_test) - joblib.dump(self._scaler, filename) + if self.dumping_enabled: + joblib.dump(self._scaler, filename) return self._scaler @@ -354,8 +360,9 @@ class KerasROOTClassification(object): logger.info("No weights found, starting completely new model") # dump to json for documentation - with open(os.path.join(self.project_dir, "model.json"), "w") as of: - of.write(self._model.to_json()) + if self.dumping_enabled: + with open(os.path.join(self.project_dir, "model.json"), "w") as of: + of.write(self._model.to_json()) return self._model @@ -386,9 +393,9 @@ class KerasROOTClassification(object): np.random.shuffle(self.y_train) np.random.set_state(rn_state) np.random.shuffle(self.w_train) - if self._scores_test is not None: + if self.pred_test is not None: np.random.set_state(rn_state) - np.random.shuffle(self._scores_test) + np.random.shuffle(self.pred_test) def train(self, epochs=10): @@ -418,20 +425,25 @@ class KerasROOTClassification(object): except KeyboardInterrupt: logger.info("Interrupt training - continue with rest") - logger.info("Save history") - self._dump_history() + if self.dumping_enabled: + logger.info("Save history") + self._dump_history() + + logger.info("Save weights") + self.model.save_weights(os.path.join(self.project_dir, "weights.h5")) - logger.info("Save weights") - self.model.save_weights(os.path.join(self.project_dir, "weights.h5")) + self.total_epochs += epochs + self._write_info("epochs", self.total_epochs) - self.total_epochs += epochs - self._write_info("epochs", self.total_epochs) + logger.info("Create/Update predictions for ROC curve") + self.pred_test = self.model.predict(self.x_test) + self.pred_train = self.model.predict(self.x_train) - logger.info("Create/Update scores for ROC curve") - self.scores_test = self.model.predict(self.x_test) - self.scores_train = self.model.predict(self.x_train) + logger.info("Get test loss and metrics of the model") + self.score = self.model.evaluate(self.x_test, self.y_test, verbose=0, sample_weight=None) - self._dump_to_hdf5("scores_train", "scores_test") + if self.dumping_enabled: + self._dump_to_hdf5("pred_train", "pred_test") @@ -521,7 +533,7 @@ class KerasROOTClassification(object): def plot_ROC(self): logger.info("Plot ROC curve") - fpr, tpr, threshold = roc_curve(self.y_test, self.scores_test, sample_weight = self.w_test) + fpr, tpr, threshold = roc_curve(self.y_test, self.pred_test, sample_weight = self.w_test) fpr = 1.0 - fpr roc_auc = auc(tpr, fpr) @@ -571,7 +583,10 @@ class KerasROOTClassification(object): def create_getter(dataset_name): def getx(self): if getattr(self, "_"+dataset_name) is None: - self._load_from_hdf5(dataset_name) + try: + self._load_from_hdf5(dataset_name) + except KeyError: + logger.info("KeyError") return getattr(self, "_"+dataset_name) return getx