diff --git a/plotting.py b/plotting.py index f5793624aaa240d32e1313445485d7e8b2fa9bd6..05110526959b5bd15e18bf1627bd68ba8026df4a 100644 --- a/plotting.py +++ b/plotting.py @@ -226,7 +226,7 @@ def plot_hist_2D(plotname, xedges, yedges, hist, varx_label=None, vary_label=Non extraopts.update(norm=matplotlib.colors.LogNorm(vmin=np.min(hist[hist>0]), vmax=np.max(hist))) ax.set_facecolor("black") - pcm = ax.pcolormesh(X, Y, hist, cmap="inferno", **extraopts) + pcm = ax.pcolormesh(X, Y, hist, cmap="inferno", linewidth=0, rasterized=True, **extraopts) cbar = fig.colorbar(pcm, ax=ax) cbar.set_label(zlabel) ax.set_ylabel(vary_label) @@ -254,12 +254,13 @@ def plot_cond_avg_actmax_2D(plotname, model, layer, neuron, ranges, varx_index, vary_index, nbinsx, xmin, xmax, nbinsy, ymin, ymax, scaler=None, + ntries=20, **kwargs): xedges = np.linspace(xmin, xmax, nbinsx) yedges = np.linspace(ymin, ymax, nbinsy) - hist = np.zeros(nbinsx*nbinsy).reshape(nbinsx, nbinsy) + hist = np.zeros(int(nbinsx*nbinsy)).reshape(int(nbinsx), int(nbinsy)) gradient_function = get_grad_function(model, layer, neuron) @@ -272,9 +273,11 @@ def plot_cond_avg_actmax_2D(plotname, model, layer, neuron, ranges, random_event[0][index] = val if scaler is not None: random_event = scaler.transform(random_event) - act = np.mean([max_activation_wrt_input(gradient_function, random_event, maxit=1, const_indices=[varx_index, vary_index])[0][0] for i in range(20)]) + act = np.mean([max_activation_wrt_input(gradient_function, random_event, maxit=1, const_indices=[varx_index, vary_index])[0][0] for i in range(ntries)]) hist[ix][iy] = act + hist = hist.T + plot_hist_2D(plotname, xedges, yedges, hist, zlabel="Neuron output", **kwargs) diff --git a/scripts/plot_single_neuron.py b/scripts/plot_single_neuron.py index 6f128199d8b11c4d4b86b1ce4aabf3127593b456..ce6728f62a3159ed12579aeef46efd31c5131718 100755 --- a/scripts/plot_single_neuron.py +++ b/scripts/plot_single_neuron.py @@ -10,7 +10,8 @@ from KerasROOTClassification.plotting import ( get_mean_event, plot_NN_vs_var_2D, plot_profile_2D, - plot_hist_2D_events + plot_hist_2D_events, + plot_cond_avg_actmax_2D ) from KerasROOTClassification.tfhelpers import get_single_neuron_function @@ -20,7 +21,7 @@ parser.add_argument("output_filename") parser.add_argument("varx") parser.add_argument("vary") parser.add_argument("-m", "--mode", - choices=["mean_sig", "mean_bkg", "profile_sig", "profile_bkg", "hist_sig", "hist_bkg"], + choices=["mean_sig", "mean_bkg", "profile_sig", "profile_bkg", "hist_sig", "hist_bkg", "cond_actmax"], default="mean_sig") parser.add_argument("-l", "--layer", type=int, help="Layer index (takes last layer by default)") parser.add_argument("-n", "--neuron", type=int, default=0, help="Neuron index (takes first neuron by default)") @@ -29,7 +30,8 @@ parser.add_argument("--contour", action="store_true", help="Interpolate with con parser.add_argument("-b", "--nbins", default=20, type=int, help="Number of bins in x and y direction") parser.add_argument("-x", "--xrange", type=float, nargs="+", help="xrange (low, high)") parser.add_argument("-y", "--yrange", type=float, nargs="+", help="yrange (low, high)") -parser.add_argument("-p", "--profile-metric", help="metric for profile modes", default="mean", choices=["mean", "average", "max"]) +parser.add_argument("-p", "--profile-metric", help="metric for profile modes", default="average", choices=["mean", "average", "max"]) +parser.add_argument("--ntries-cond-actmax", help="number of random events to be maximised and averaged per bin", default=20, type=int) args = parser.parse_args() @@ -111,6 +113,7 @@ elif args.mode.startswith("profile"): ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2], metric=metric_dict[args.profile_metric], varx_label=varx_label, vary_label=vary_label, + log=args.log, **opt_kwargs ) @@ -134,3 +137,23 @@ elif args.mode.startswith("hist"): varx_label=varx_label, vary_label=vary_label, log=args.log, ) + +elif args.mode.startswith("cond_actmax"): + + x_test_scaled = c.scaler.transform(c.x_test) + + # ranges in which to sample the random events + ranges = [np.percentile(x_test_scaled[:,var_index], [1,99]) for var_index in range(len(c.branches))] + + plot_cond_avg_actmax_2D( + args.output_filename, + c.model, layer, neuron, ranges, + varx_index, + vary_index, + xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2], + ymin=vary_range[0], ymax=vary_range[1], nbinsy=vary_range[2], + scaler=c.scaler, + ntries=args.ntries_cond_actmax, + varx_label=varx_label, vary_label=vary_label, + log=args.log, + )