diff --git a/toolkit.py b/toolkit.py index 0403f9bfa0183311d47082c294449130f49009af..5ac5fff1d9a9798481b9f5bd9e190a97a3abb697 100755 --- a/toolkit.py +++ b/toolkit.py @@ -2107,7 +2107,7 @@ class ClassificationProjectDecorr(ClassificationProject): ) if (dropout_fraction is not None) and (dropout_fraction > 0): layers.append(Dropout(rate=dropout_fraction)) - layers.append(Dense(1, activation=self.activation_function_output)) + layers.append(Dense(1, activation=self.activation_function_output, name="class")) return self._class_layers @@ -2120,8 +2120,8 @@ class ClassificationProjectDecorr(ClassificationProject): self._adv_hidden_layers = [] self._adv_target_layers = [] self._adv_hidden_layers.append(Dense(128, activation="tanh")) - for binning in self.decorr_binnings: - layer = Dense(len(binning), activation="softmax") + for binning, field_name in zip(self.decorr_binnings, self.target_fields): + layer = Dense(len(binning), activation="softmax", name="adv_"+field_name) self._adv_target_layers.append(layer) return self._adv_hidden_layers+self._adv_target_layers