diff --git a/plotting.py b/plotting.py index 749d2a9d6690e4859df8c55dc1cad79a9f6778fa..db4df9552ac5cea85595eb44f7ee477c2de4b3b3 100644 --- a/plotting.py +++ b/plotting.py @@ -36,7 +36,7 @@ def get_mean_event(x, y, class_label, mask_value=None): means = [] for var_index in range(x.shape[1]): if mask_value is not None: - masked_values = np.where(x[:,var_index] == mask_value)[0] + masked_values = np.where(x[:,var_index] != mask_value)[0] x = x[masked_values] y = y[masked_values] means.append(np.mean(x[y==class_label][:,var_index])) diff --git a/scripts/plot_NN_2D.py b/scripts/plot_NN_2D.py index 460934daca75730d6f3d0df7b2d881af6c1595af..8a75af34efc073b8b05e5dd33959d5a7bda34f67 100755 --- a/scripts/plot_NN_2D.py +++ b/scripts/plot_NN_2D.py @@ -115,9 +115,9 @@ if args.mode.startswith("mean"): print(means) if hasattr(c, "get_input_list"): - input_transform = c.get_input_list + input_transform = lambda x : c.get_input_list(c.transform(x)) else: - input_transform = None + input_transform = c.transform if not args.all_neurons: plot_NN_vs_var_2D( @@ -127,7 +127,6 @@ if args.mode.startswith("mean"): vary_index=vary_index, scorefun=get_single_neuron_function( c.model, layer, neuron, - scaler=c.scaler, input_transform=input_transform ), xmin=varx_range[0], xmax=varx_range[1], nbinsx=varx_range[2], diff --git a/toolkit.py b/toolkit.py index 8779db4810fd803a0811bdb0e2de1f4f1ca5ae57..834d9774411238f896aa8bb6ffa63fad9a42e3ce 100755 --- a/toolkit.py +++ b/toolkit.py @@ -1770,7 +1770,7 @@ class ClassificationProjectRNN(ClassificationProject): def _batch_transform(self, x, fn, batch_size): "Transform array in batches, temporarily setting mask_values to nan" - transformed = np.empty(len(x)) + transformed = np.empty(x.shape, dtype=x.dtype) for start in range(0, len(x), batch_size): stop = start+batch_size x_batch = np.array(x[start:stop]) # copy