diff --git a/toolkit.py b/toolkit.py index f4451f31b0d0a9bf9553896f9f577ef72c3e7a25..9dfe91fab6e933addb40dde447e31c4d6f8c2eee 100755 --- a/toolkit.py +++ b/toolkit.py @@ -13,7 +13,7 @@ import pandas as pd import h5py from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.externals import joblib -from sklearn.metrics import roc_curve +from sklearn.metrics import roc_curve, auc from keras.models import Sequential from keras.layers import Dense @@ -128,7 +128,7 @@ class KerasROOTClassification: self.b_train = tree2array(bkg_chain, branches=self.branches+[self.weight_expr]+self.identifiers, selection=self.selection, - start=0, step=2) + start=0, step=200) self.s_test = tree2array(signal_chain, branches=self.branches+[self.weight_expr], selection=self.selection, @@ -136,7 +136,7 @@ class KerasROOTClassification: self.b_test = tree2array(bkg_chain, branches=self.branches+[self.weight_expr], selection=self.selection, - start=1, step=2) + start=1, step=200) self._dump_training_list() self.s_eventlist_train = self.s_train[self.identifiers] @@ -404,13 +404,15 @@ class KerasROOTClassification: logger.info("Plot ROC curve") fpr, tpr, threshold = roc_curve(self.y_test, self.scores_test, sample_weight = self.w_test) + fpr = 1.0 - fpr + roc_auc = auc(tpr, fpr) plt.grid(color='gray', linestyle='--', linewidth=1) - plt.plot(fpr, tpr, label='NN') + plt.plot(tpr, fpr, label='NN') plt.plot([0,1],[1,0], linestyle='--', color='black', label='Luck') - plt.xlabel("False positive rate (background rejection)") - plt.ylabel("True positive rate (signal efficiency)") + plt.xlabel("Background rejection") + plt.xlabel("Signal efficiency") plt.title('Receiver operating characteristic') plt.xlim(0,1) plt.ylim(0,1) @@ -421,7 +423,6 @@ class KerasROOTClassification: plt.savefig(os.path.join(self.project_dir, "ROC.pdf")) plt.clf() - def plot_score(self): pass