import unittest import numpy as np from analysis import Analysis import matplotlib.pyplot as plt class testAnalysis(unittest.TestCase): """ A simple test to check the angle means ans error computation. """ def testxFit(self): #ang = np.array([6,5,6,5,8,4,8,4,7,1,7,1,10,3,10,3,None,None,None,None]) #ang = np.reshape(ang, (5,2,2)) A = Analysis() #self.assertEqual(A.results['Mean'][0], 5.5) #self.assertEqual(A.results['Error'][0], 0.5) x = np.arange(0, 6) z = A.xEOM([1,20,10,100], x) #plt.plot(z,x) #plt.show() Data = [] for i in range(0,len(z)): err =0.01* np.random.random(size=(4)) #print(err) Data.append([[x[i]+err[0],x[i]-err[1]], [0,0], [z[i]+err[2], z[i]-err[3]]]) #np.concatenate((Data, # [[0,0], [y[i]+0.1,y[i]-0.1], [z[i]+0.1, z[i]-0.1]]), axis=0) Data = np.array(Data) A.fill(Data) A.xFit() #print(y) #print(z) #print(Data) def testyFit(self): #ang = np.array([6,5,6,5,8,4,8,4,7,1,7,1,10,3,10,3,None,None,None,None]) #ang = np.reshape(ang, (5,2,2)) A = Analysis() #self.assertEqual(A.results['Mean'][0], 5.5) #self.assertEqual(A.results['Error'][0], 0.5) z = np.arange(0, 6) y = A.yEOM([1000,100,100], z) #plt.plot(z,y) #plt.show() Data = [] for i in range(0,len(z)): err =0.001* np.random.random(size=(4)) #print(err) Data.append([[0,0], [y[i]+err[0],y[i]-err[1]], [z[i]+err[2], z[i]-err[3]]]) #np.concatenate((Data, # [[0,0], [y[i]+0.1,y[i]-0.1], [z[i]+0.1, z[i]-0.1]]), axis=0) Data = np.array(Data) A.fill(Data) A.yFit() #print(y) #print(z) #print(Data)